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Abstract

This paper presents an empirical framework to study the assignment of chil-
dren into foster homes and its implications on placement outcomes. The em-
pirical application uses a novel dataset of confidential foster care records from
Los Angeles County, CA. The estimates of the empirical model are used to ex-
amine policy interventions aimed at improving placement outcomes. In gen-
eral, it is observed that market thickness tends to improve expected placement
outcomes. If placements were assigned across all the administrative regions
of the county, the model predicts that (i) the average number of foster homes
children go through before exiting foster care would decrease by 8% and (ii)
the distance between foster homes and children’s schools would be reduced by
54%.
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1 Introduction

The assignment of scarce resources is at the heart of economics. In this paper, I
study one particular assignment setting that has been largely overlooked by the
economics literature—the placement of children into foster homes. I develop an
empirical framework that captures how social workers match children and foster
homes in the field. The analysis centers on the relationship between placement as-
signments and outcomes.

I estimate an econometric model using a novel dataset of confidential county
records at the micro-level from the largest foster care system in the United States,
the one in Los Angeles County, California. Motivated by the literature on children
welfare studies (and anecdotal evidence from conversations with social workers),
my definition of placement outcomes includes both the duration of placements and
whether they are disrupted (i.e., children are moved from one foster home to an-
other) or terminate because children exit foster care.

I use the estimates of the model to examine various policy interventions aimed
at improving placement outcomes. I find that thicker markets generate better out-
comes in the sense that they result in lower disruption rates, but the effects are dif-
ferent along different dimensions. Specifically, the model predicts that the gains
from assigning placements across geographic regions in the county are greater than
those generated by delaying assignments. Counterfactual exercises show that pool-
ing the assignments across all the regional offices in the county would decrease the
expected number of placements each child goes through before exiting foster care
by 8%. I also quantify the system-wide effects of specific types of foster homes. I find
that increasing the share of placements involving children’s relatives (also known
as kinship care) would lead to lower placement disruption rates and longer place-
ments. In contrast, the model predicts mixed effects from increasing the share of
foster homes that are recruited and trained by non-profit agencies.

Themodel is designed to capture the co-dependence between placement assign-
ments and outcomes. On the one hand, the model captures how the assignments
of placements are driven by their expected outcomes. On the other hand, it also
recognizes that the outcomes observed in the data are selected through such as-
signment. The interplay between assignments and outcomes causes an endogene-
ity problem. The matching mechanism determines which placement outcomes are
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observable. Hence, the observed distribution of placement outcomes is biased inas-
much as placement assignments are driven by unobservables correlated with out-
comes. To identify the true distribution of outcomes, the model exploits the ex-
ogenous variation across the dates and geographic regions in which children enter
foster care. I study matching markets at the daily level across the nineteen admin-
istrative regions defined by the Los Angeles County Department of Children and
Family Services.

It is widely recognized that stable foster care placements are essential for the
social, emotional, and cognitive development of children (UC Davis 2008). Social
workers in the field also strive to assign long-lasting placements to minimize future
workloads. Nonetheless, it fairly common that children go through multiple foster
homes while they are in foster care.1 A key factor affecting outcomes is the place-
ment characteristics, which are the result of the assignment of children into foster
homes. Understanding how children are being assigned to foster homes allows one
to analyze how the matching mechanism used in the field translates into outcomes
via placement characteristics. For example, the estimates of themodel show that the
gains from thicker markets come largely from being able to assign children to foster
homes that are closer to their schools. The model predicts that if the assignments
of placements were determined at the county-level (instead of within geographic
regions), the average distance between children’s schools and their foster homes
would be cut by 54%.

I model the assignment of children into foster homes as an optimal matching
problem, and I model placement outcomes with a mixed competing risks duration
model. The matching problem allows for idiosyncratic variation in the preferences
of children over foster home characteristics, and vice versa. At the same time, it takes
into account that placements are assigned on the basis of their expected outcomes.
I model unobservable heterogeneity through frailty terms in the outcome distribu-
tion. To account for possible selection bias (i.e., that placements may be assigned
because of unobservables correlated with outcomes), I assume that the decision-
maker choosing the matching between children and foster homes observes such

1For example, of all the childrenwho exited foster care in theU.S. during 2015, 56.1% of themwent
through at least two placements, and the average number of placements per child was 2.56 (NDACAN
2015). It has also been shown that the time children spend in foster care, as well as the number of
placement disruptions they experience, are associated in adult life with emotional and behavioral
difficulties, increased criminal convictions, and higher depression and smoking rates (Dregan and
Gulliford 2012).
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frailty terms. Thus, the distribution of outcomes generated by the model is condi-
tional on the assignment chosen and incorporates unobservable heterogeneity.

The estimates of the matchingmodel allowme to quantify the trade-offs that so-
cial workers incur when assigning placements. For instance, at first sight, it seems
intuitive that social workers aim to assign the placements that are expected to have
the longest durations in order to avoid placement disruptions. However, this rea-
soning ignores the intimate co-dependence between a placement’s duration and its
termination reason. Indeed, according to the model estimates, social workers’ as-
signments reflect a dislike for duration conditional on termination reason. That is,
if a placement were known to be disrupted, the model estimates indicate that social
workers would prefer it to be disrupted sooner rather than later. Similarly, if it were
known that a placement will terminate because the child will exit foster care to a
permanent placement, social workers would prefer this to happen as soon as possi-
ble. At the same time, the estimates show that social workers prioritize minimizing
disruptions over placement duration. That is, regardless of a placement’s duration,
the model predicts that social workers would always prefer for placements not to be
disrupted.

The paper is organized as follows. I review the related literature inwhat remains
of the introduction. In Section 2, I provide an institutional background of foster care,
and describe the data. Section 3 presents the econometric model. In Sections 4 and
5, I discuss the identification of the model and the estimation technique. Section
6 reports the estimation results. Section 7 shows the results of the counterfactual
exercises, and Section 8 concludes.

Related Literature.— The main contribution of this paper is to develop an empiri-
cal framework to study (1) how children are assigned into foster homes, and (2)
how the matching mechanism underlying such assignment translates into place-
ment outcomes. Slaugh, Akan, Kesten, and Ünver (2015) is the only other paper
in the literature that applies tools from matching and market design to a question
related to foster care. They analyze the Pennsylvania Adoption Exchange program,
whose main aim is to facilitate the adoption of foster children through a comput-
erized recommendation system. They analyze the effect that improvements to the
system—in terms of enhancing the capacity of social workers to match children and
prospective adoptive parents—have on the rate of successful adoptions.
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Baccara, Collard-Wexler, Felli, andYariv (2014) analyze data from an online plat-
form that seeks to facilitate adoptions. Although they are distinct in fundamental
ways, adoption and foster care closely related. Parents who are seeking to adopt
often become foster parents beforehand, and, in many cases, foster children are
adopted by their foster parents. Baccara, Collard-Wexler, Felli, and Yariv (2014)
focus on the preferences that prospective adoptive parents show for children. They
find a favorable preference for girls, and a preference against African Americans.

Overall, the economics literature analyzing questions related to foster care is
slim. In a series of papers, Doyle Jr. 2007; 2008; 2013 aims to evaluate the impact
of foster care on long-term outcomes. Their approach exploits that, in many cases,
social workers are assigned randomly to investigate reports of abuse and neglect.
This random assignment allows them to identify the “treatment effect” of foster
care on schooling, employment, and criminality. Doyle Jr. and Peters (2007) use
variation in the subsidies offered to foster parents to estimate the supply curve of
foster homes. Analyzing data from the late 1980s early 1990s, they estimate that, in
states with shortages of foster homes, an increase in subsidies by 10% increases the
quantity supplied by 3%.2

In broader terms, this paper belongs to the empirical matching and market de-
sign literature (Roth 2016). The common denominator in this literature is the formu-
lation and estimation of structural models that incorporate key institutional aspects
of the market being studied. In a seminal contribution, Choo and Siow (2006) study
themarriagemarket in a transferable utility (TU) environment. Their setup is based
on the Assignment Game developed by Shapley and Shubik (1971). See Graham
2011; 2013, Chiappori, Oreffice, and Quintana-Domeque (2012), and Galichon and
Salanié (2015) for extensions and generalizations of their approach. Choo (2015)
further extends the analysis to a dynamic setting. More generally, Fox (2016) stud-
ies nonparametric identification and estimation of TUmatching markets. Buchholz
(2019) and Fréchette, Lizzeri, and Salz (2019) study matching models in the market
for taxis.3

In a non-TU environment, Agarwal (2015) formulates and estimates a match-
ing model of the medical match (NRMP). Agarwal and Somaini (2018) study the

2See Doyle Jr. and Aizer (2018) for an excellent literature review on the current state of empirical
work in economics on child maltreatment and its relation to foster care and intimate partner violence.

3Market-clearing transfers need not only be monetary prices (e.g. passengers waiting for taxis
“pay” in waiting-time units), see Galichon and Hsieh (2017).
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strategic incentives of different mechanisms in the assignment of children to pub-
lic schools. For other recent contributions to the empirical study of school choice,
see Narita (2016), Hwang (2016), Calsamiglia, Fu, and Güell (2017), and Abdulka-
diroğlu, Agarwal, and Pathak (2017). There is also a growing literature analyzing
kidney exchange (e.g. Agarwal et al. 2017), waiting-list mechanisms for organ do-
nation (Agarwal et al. 2019) and public housing allocation (Waldinger 2019).

All the studies cited in the previous two paragraphs model assignments accord-
ing to specific matching mechanisms. The TU literature generally assumes that the
market is cleared via equilibrium transfers. In non-TU environments, the assign-
ment usually results from predetermined matching algorithms.4 The main differ-
ences from previous studies and this paper is that the assignment mechanism un-
derlying foster care neither involves equilibrium transfers nor makes use of a sys-
tematic matching algorithm. The matching between children and foster homes is
centralized and the consequence of both (i) specific regulations and (ii) discretionary
choices made by social workers in the field.

The insights from this paper may also be relevant for the growing literature on
dynamic matching. One of the main objectives of this literature is to study the
dynamic trade-offs between waiting time, thickness, incentives, and match qual-
ity. For notable examples, see Baccara, Lee, and Yariv (Forthcoming), Ünver (2010),
Akbarpour, Li, and Gharan (Forthcoming), Doval (2018), and Ashlagi, Jaillet, and
Manshadi (2013). Specifically, this paper provides an example in which increasing
market thickness by delaying placements does not have sizable effect on outcomes.

2 Institutional Background and Data

2.1 Foster care in the U.S. and Los Angeles County

Every year more than a half million children go through foster care in the United
States. Foster children are a particularly vulnerable population: most of them are

4The study of matching algorithms dates back to Gale and Shapley (1962), who formulated the
well-known Deferred Acceptance (DA) algorithm. Roth (1984) documents the history of the medical
match and, more specifically, how it came to employ the DA algorithm before the findings of Gale and
Shapley. Given the attractive features of DA (stability and strategy-proofness), it has been proposed as
a mechanism to match children to schools (Abdulkadiroğlu and Sönmez 2003). A significant portion
of the school choice literature compares the DA algorithm with the so-called Boston algorithm (e.g.
Abdulkadiroğlu, Pathak, Roth, and Sönmez 2005).
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in foster care because they were abused, neglected, or abandoned (NDACAN 2015).
The main goal of foster care is to provide temporary care for children until per-
manent placements can be arranged for them. When a child is moved from a foster
home to a permanent placement, it is said that she exits foster care to “permanency”.
Childrenwho exit to permanency usually go back to livewith their birth families, or,
if this is not possible, are adopted or assigned guardians. When permanent place-
ments cannot be arranged for children, they stay in foster care until they become of
age, and are emancipated from the system (also known as “aging out”).5

The administrative management of the foster care system is at the county level
in the U.S.6 The child protection agency of Los Angeles County is the Department
of Children and Family Services (DCFS).7 As other child protection agencies, DCFS
is responsible of processing and investigating reports of child abuse, taking cases to
court, and implementing court resolutions. After receiving a report, county social
workers conduct an investigation to determine if children need to be removed from
home. The decisionwhether a child should be removed or not needs to be approved
by a judge. The procedures regarding the investigation and removal decision are in-
dependent from placement assignment procedures. Foster care placements are as-
signed and managed within nineteen regions across the city of Los Angeles. When
a child enters foster care, its case is handled by the regional office corresponding to
the region where the child’s birth mother lives. Social workers from that regional
office are responsible for finding a suitable placement for the child, and overseeing
her case while she remains in foster care.

2.2 Placement Assignment in Foster Care

By law, there a few factors that social workers must consider when assigning place-
ments: (1) whether a child has relatives who are available to take care of them, in

5Foster care is inherently different from adoption. In general, adoptive parents have the same
rights and obligations over their children as biological parents. By contrast, foster parents have very
limited say in the placement of foster children. Whether a child is removed from home, placed in or
exits foster care, is a decision made by the courts, who rely heavily on the input of social workers.

6In some cases, there is a single child protection agency for all the counties covering the same
urban area (e.g., in New York City there is a single agency for the five boroughs).

7Specific foster care regulations vary at the state and county level. In California, the main regula-
tions of the foster care system are provided in the Welfare and Institutions Code (WIC 2019), and the
Family Code (FAM 2019). In Los Angeles County, foster care regulations are provided in the Child
Welfare Policy Manual of DCFS (2019). For a history of the foster care system in the United States, see
Rymph 2017.
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which case children must be placed with their relatives; (2) the location of the foster
home: social workers must make efforts to place children in foster homes that are
near their schools and their family homes (fromwhere they were removed), and (3)
whether a child has siblings who are also in foster care, in which case efforts should
bemade to place siblings together.8 However, the law does not provide a systematic
way in which these factors are to be waged against one another. The law also gives
social workers the discretion to assign placements that bypass these guidelines if
they consider that such placements are not in the child’s best interest. Likewise,
children who are 10 years or older also have the right to make a brief statement in
court regarding the placement decision.

In the field, socialworkers aim to find placements that fulfill all the requirements
stated in the law, and are also suitable for children inmore practical ways. For exam-
ple, when evaluating prospective foster homes, theymay take into account schedul-
ing and transportations considerations, the family environment of the foster home
(e.g., the age and gender of the family’s biological children), and other idiosyncratic
factors such as the experience of the foster parents and the history of a child in the
system. The reason for taking into account each of these factors is because a main
concern of social workers is for placements to be disrupted. Placements are usu-
ally disrupted because the foster family and the foster child are not able to establish
a harmonious and stable relationship (e.g., the child presents behavioral problems
the family is not prepared to deal with, the situation of the family changes, or prob-
lems emerge between the foster child and the family’s biological children). When
placements are disrupted, children need to be moved to new foster homes. In LA
County, on average, foster children go through 2.1 foster homes before exiting to
permanency.

I gathered the above observations through informal conversations with a hand-
ful of social workers with experience in the field. Overall, my impression from these
conversations is that apart from the guidelines embedded in the law, social workers
work on a case-by-case basis. They treat each case differently, and wage all of the
involved factors in a case to find the best possible placement. Another common ob-
servation is that, inmany cases, ideal placements are just not possible because of the
shortage of foster homes. As children enter foster care, social workers within each

8See DCFS 2019, Sec. 0100-510.60; FAM 2019, Div. 12, Part 6, Sec. 7950, and WIC 2019, Div. 9, Part
4, Ch. 1, Sec. 16002.
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regional office come together and do their best to find placements that are suitable
for the children.

Another characteristic feature of how children are assigned placements in the
field, is that the process is done as quickly as possible. In most cases, children must
be placed on very short notice. Furthermore, even if a social worker knows that
a child will be removed in the near future (usually not more than a few days), a
placement cannot be assigned until the child has been removed. The reason for
this is precisely because foster homes are scarce and there are children in need of
placements constantly. Therefore, social workers cannot hold placements and wait
for children to be removed from home. It would mean that other children are not
being placed, which social workers try to avoid as best they can.9

2.3 Data Description and Summary Statistics

The data used in this study comes from confidential county records of DCFS. The
database used for the analysis includes the record of every child that was placed
in a foster home at any point between January 1, 2011, and February 28, 2011, in
LA County.10 During this period, 2,087 children where assigned to a foster home
at least once in LA County, and 2,358 placements were assigned in total across the
nineteen regional offices in LA County. On average, roughly 40 placements are as-
signed everyday throughout the county. Table 1 contains summary statistics of the
placements in the dataset.

2.4 Modeling Strategy

In what follows, I develop an econometric model with the objective of analyzing
the determinants underlying placement assignment. The main focus is on place-
ments that were assigned on the same day in the same regional office. That is, the
model aims to explain what drives thematching between children and foster homes

9Childrenwho enter foster care at timeswhen there are no placements available are usually placed
in Emergency-Foster Care or Emergency Shelter Care while a non-emergency placement can be found
(usually a few days at most). Emergency placements are available 24/7, but are not suitable for stays
lasting more than a few days.

10The confidentiality waiver needed to access the data granted access to a larger time period. How-
ever, I restrict the sample period to a two-month period for computational considerations. As it shall
be seen in the coming sections, the econometric framework I develop in this paper is computationally
intensive.
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Table 1: Summary Statistics

(1) (2) (3) (4) (5) (6) (7) (8)
n mean sd p5 p25 p50 p75 p95

Termination Reasons
Disruption 2358 0.5093 0.5 0 0 1 1 1
Exit 2358 0.4237 0.4942 0 0 0 1 1
Emancipation 2358 0.05174 0.2215 0 0 0 0 1
Censored 2358 0.01527 0.1226 0 0 0 0 0

Duration
Duration (days) 2358 255.4 343.9 5 35 131.5 339 898.4
Duration|Disrup 1201 164.6 242.7 4 22 74 186 623
Duration|Exit 999 304.1 304.8 5.45 66 223 439.2 879
Duration|Emanc 122 394.7 437.4 8.6 95 232 502 1400
Duration|Cens 36 1461 850.5 25.1 344.5 1969 1988 2002

Children Characteristics
Time Since Removal (days) 2358 387.7 937.6 0 0 32 292 2184
Placement # In Spell 2358 2.75 2.582 1 1 2 3 8
Spell # in Child 2358 1.194 0.4626 1 1 1 1 2
Zero Waiting Time 2358 0.8562 0.3509 0 1 1 1 1
Waiting Time (days) 2358 0.9326 3.148 0 0 0 0 10.6
Age 2358 8.694 5.967 0.2037 2.916 8.485 14.54 17.35
Male 2358 0.4576 0.4983 0 0 0 1 1
Black 2358 0.3138 0.4641 0 0 0 1 1
Hispanic 2358 0.5424 0.4983 0 0 1 1 1
White 2358 0.1175 0.3221 0 0 0 0 1
Other Race 2358 0.02629 0.16 0 0 0 0 0
English 2358 0.8223 0.3823 0 1 1 1 1
Spanish 2358 0.1773 0.382 0 0 0 0 1
Other Language 2358 0.0004241 0.02059 0 0 0 0 0
Absence/Incapacitation 2358 0.2693 0.4437 0 0 0 1 1
Abuse/Severe Neglect 2358 0.2498 0.433 0 0 0 0 1
General Neglect 2358 0.4597 0.4985 0 0 0 1 1
Other Removal Reason 2358 0.0212 0.1441 0 0 0 0 0

Children Characteristics
County Foster Home 2358 0.08567 0.2799 0 0 0 0 1
Agency Foster Home 2358 0.4258 0.4946 0 0 0 1 1
Group Home 2358 0.1158 0.32 0 0 0 0 1
Relative Home 2358 0.3728 0.4836 0 0 0 1 1
Distance Plac-Office (mi.) 2358 22.93 21.27 2.22 7.716 16.05 30.69 71.15
Distance Plac-School (mi.) 2358 18.13 23.77 0 0 7.983 26.9 72.73
No School 2358 0.2472 0.4315 0 0 0 0 1

Note: Summary statistics of placement outcomes and characteristics. The distance measures are at the
zip-code level (foster home and school). They were computed using the Google Maps API. No School
refers to children for which the dataset includes no school zip-code (presumably because the child does
not go to school, or the data is missing). sd = standard deviation; p# refers to the #th percentile.
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in cases in which two or more placements where assigned in the same day in the
same regional office. For this purpose, I slice the data of placements intomarkets ac-
cordingly. The division of the data into markets also incorporates placements with
relatives. That is, if a childwas placedwith a relative, I form an independentmarket
consisting of a single child and a single home in which the assignment problem is
trivial. The reason I keep “singleton” markets (i.e., with a single child and single
home) is to study their outcomes.

The way I model placement assignment is by considering a single matchmaker
that assigns placements in terms of their expected outcomes. That is, when there
are several ways in which children and foster homes can be matched, the match-
maker is assumed to consider the expected outcomes of all prospective placements,
and weigh them according to a specific utility function. I rationalize the observed
matching by considering it as the optimalmatching from thematchmaker’s perspec-
tive. Apart from considering the expected outcomes of prospective placements, the
matchmaker’s problem also allows for children and foster homes to have idiosyn-
cratic tastes for the type of foster home and child with whom they are matched. The
model is designed to include themost prominent institutional features of foster care
placement. That being said, the only feature I abstract away from in this paper is
the placement of siblings. In what follows, I ignore the existence of siblings in the
system, and focus on one-to-one matchings. The analysis of placement assignment
with siblings is ripe ground for future research.

3 Model

3.1 Market of Foster Care Services

Amarket is a tuple (C,H,X,Y), whereC is the set of available children;H is the set
of available foster homes; X = (xc)c∈C is the matrix of children’s (observable) char-
acteristics, i.e., xc ∈ X ⊆ Rdim(x) is the vector of characteristics of child c ∈ C, and
Y = (yh)h∈H is thematrix of the (observable) characteristics of available homes, i.e.,
yh ∈ Y ⊆ Rdim(y) is the vector of characteristics of home h ∈ H . In order to incor-
porate idiosyncratic preferences over children’s and foster home’s characteristics, I
define types as a coarsening of characteristics. LetX = {x} and Y = {y} be the sets
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of child- and home-types; formally, they are finite partitions of X and Y . Similarly,
let xc ∈ X and yh ∈ Y denote the types of c ∈ C and h ∈ H , respectively.

A one-to-one matching between children and foster homes is an indicator func-
tionM : C×H → {0, 1} such that

∑
h∈HM(c, h) ≤ 1 for all c ∈ C, and

∑
c∈CM(c, h) ≤

1 for all h ∈ H . That is,M(c, h) = 1 if child c is matched with home h, and 0 other-
wise. For simplicity, I also write (c, h) ∈ M ifM(c, h) = 1. Let M(C,H) denote the
set of feasible one-to-one matchings between C and H .

Matching a child and a home forms a placement. The outcome of a placement
is given by (T,R) ∈ R+ × R, where T denotes the placement’s duration, and R

its termination reason. A placement may terminate because it is disrupted (d), the
child exits to permanency (ex), or is emancipated (em). The set of termination rea-
sons is thusR ≡ {d, ex, em}. It is convenient to differentiate emancipation from the
other termination reasons because the time to emancipation, denoted by Tem, is not
random. I define the set of termination reasons with non-degenerate duration as
R0 = {d, ex}.

Children are matched to foster homes on a daily basis within regional offices
throughout the county. The unit of observation is a market, indexed by i = 1, . . . , n.
Markets correspond to office-days, and also incorporate the restriction that children
need to be matched with their relatives whenever possible. That is, children for
whom relatives are available as prospective foster parents have their own markets
(consisting of a single child and a single foster home). The data consists on (1) a
sample of markets, (Ci, Hi,Xi,Yi)

n
i=1; (2) thematching chosen in eachmarket, M =

(Mi)
n
i=1, whereMi ∈M(Ci, Hi) for i = 1, . . . , n, and (3) the outcomes of the assigned

placements, (Ti,Ri)
n
i=1, where Ti = (Tch)(c,h)∈Mi

, and Ri = (Rch)(c,h)∈Mi
.

I take the data of markets, (Ci, Hi,Xi,Yi)
n
i=1, as given (i.e., as exogenous vari-

ables). The observed matching and the realized outcomes, (Mi,Ti,Ri)
n
i=1, are the

outcome (or endogenous) variables of the model. Note that this implies that there
are no spillovers across office-days. Every day, in every office, a matching is as-
signed between the available children and foster homes taking the market as given.
I outline the data generating process of the endogenous variables, (M,T,R), in the
following sections.
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3.2 Placement Assignment

Placements are assigned by a single (or representative) utilitarianmatchmaker, who
has preferences over realized outcomes (T,R) ∈ R+ × R. The matchmaker’s pref-
erences are represented by the utility function:

(1) u(T,R;Tem) = µR + ϕR log T + ϕ̄R log Tem,

where µR, ϕR, ϕ̄R ∈ R, are unknown parameters for R ∈ R. The parameter µR
measures the preference over termination reasonR ∈ R, regardless of duration; ϕR
is the marginal utility of duration conditional on terminating due to R ∈ R. The
utility function also includes the time to emancipation in its third term to control for
the fact that placements involving younger children may have ex-ante longer dura-
tions. For example, if ϕ̄R = −ϕR, the matchmaker cares about duration relative to
the time to emancipation. More generally, one can see that the sign of the marginal
rate of substitution between duration and age, conditional on termination reason
R ∈ R, is equal to the sign of ϕR/ϕ̄R.

Consider a prospective placement (c, h) ∈ C×H . LetIch denote the information
that the matchmaker has on its outcome distribution. The total payoff of placing
child c ∈ C in home h ∈ H to the matchmaker is given by:

(2) V (c, h) = π(c, h) + εcyh + ηxch,

where π(c, h) := E
[
u(T̃ , R̃;Tem) |Ich

]
captures the preferences and information

available to the matchmaker about the placement’s outcome. I specify the distribu-
tion of (T̃ , R̃) | Ich in the next section.11 The remaining two terms in (2), εcyh and
ηxch, capture idiosyncratic taste variation across children and foster homes (which is
unobservable to the econometrician). Specifically, εcy captures the payoff of match-
ing child c with a home of type y ∈ Y , and ηxh that of matching home h with a
child of type x ∈ X . In this sense, the model incorporates the preferences that chil-
dren may have for being placed in specific types of homes, and those of homes for
taking care of particular types of children. More generally, the taste variation terms
are aimed to capture type-specific idiosyncratic unobservables that affect placement

11I differentiate random variables that are observable to the econometrician from their realized
values with a tilde; (T̃ , R̃) denotes the unrealized (random) placement outcome, while (T,R) ∈ R+×
R denotes its realization.
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assignment (e.g., the matchmaker may also have preferences over forming certain
types of placements, regardless of their outcomes).

The matchmaker chooses the matchingM ∈M(C,H) that maximizes its aggre-
gate payoff. Since V (c, h) is observable to the matchmaker for all (c, h) ∈ C×H , the
observed matching is the solution to the following linear programming problem:

(3) max

 ∑
c∈C,h∈H

M(c, h)V (c, h) : M ∈M(C,H)

 .

I restrict attention tomatchings inwhich no child is left unmatchedwhile there is an
unmatched home. That is, besides incorporating the natural constraints that every
child can be matched with at most one home (and vice versa), the set of feasible
matchingsM(C,H) satisfies:

(4) M ∈M(C,H) ⇔
∑

c∈C,h∈H
M(c, h) = min{|C|, |H|}.

3.3 Placement Outcomes

Prospective placements are indexed by (c, h) ∈ C × H . For simplicity, consider a
generic placement and omit such index in this section. The full vector of characteris-
tics of a placement is given byI = (x,y,ω), where (x,y) ∈ X×Y are the observable
child- and home-characteristics, andω ∈ Rdim(ω) is a vector of characteristics not ob-
served by the econometrician. The distribution of a placement’s outcome, (T̃ , R̃),
depends on its full vector of characteristics, I .

I model placement outcomes as the result of mixed competing risks. Consider a
generic placement with characteristics I = (x,y,ω). Let T̃R be the latent duration
associated to the “risk” of terminating due to reason R ∈ R0. Up to censoring,
due to the sample period or emancipation, a placement’s outcome is determined
by the least latent duration. Denote the time to the end of the sample period by
Tcen, and indicate censored placements by R = cen. To simplify notation, I define
T̃em = Tem and T̃cen = Tcen as the degenerate latent durations corresponding to the
time to emancipation and the end of the sample period, respectively. Formally, the
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outcome of a placement is given by:

(5) T̃ = min
{
T̃R : R ∈ R ∪ {cen}

}
, and R̃ = arg min

{
T̃R : R ∈ R ∪ {cen}

}
.

Under the above specification, a placement is emancipated (or censored) if and only
if it has not been disrupted or has exited to permanency by its emancipation date
(or the end of the sample period). Note that each placement in the data is subject
to either emancipation or censoring due to the sample period, depending on which
of Tem and Tcen is lower. Both types of censoring, due to emancipation and the
end of the sample period, are equivalent in terms of the likelihood of the latent
durations. However, they are not equivalent from thematchmaker perspective, who
has a preference over the emancipation likelihood and the time to emancipation.
Censoring due to the sample period is only statistical in nature.

Assumption 1 (Unobserved heterogeneity). The unobservable characteristics of a place-
ment are given by the vector ω = (ωR)R∈R0 . Furthermore,

(6) ω ∼ N(0,Σω),

where Σω is a positive semidefinite and symmetric matrix of size |R0| × |R0|.

Assumption 2 (Burr hazards). Conditional on a placement’s characteristics, I , the latent
durations, {TR : R ∈ R0}, are independent. Furthermore, the conditional distribution of
TR is determined by the following Burr hazard rate12,

(7) λR(T |I) =
kR(I)αRT

αR−1

1 + γ2
RkR(I)TαR

, R ∈ R0,

where kR(I) ≡ exp {ωR + g(x,y)βR}with βR ∈ Rdim(β), g : X×Y → Rdim(β), αR > 0,
and γR ≥ 0.

Assumption 2 specifies the distribution of placement outcomes from the per-
spective of the matchmaker, (T̃ , R̃) | I . The matchmaker’s additional information,
ω, consists of unobservable frailty terms, (ωR)R∈R0 , whichmay shift the hazard rate
associated to each “risk” (termination reason) upwards or downwards. Since such
frailty terms are not observable to the econometrician, the distribution (T̃ , R̃) |I is

12The hazard rate of the random variable T̃ is the function defined by λ(T ) = f(T )/F̄ (T ), where
f denotes the probability density function of T̃ , and F̄ its survivor function. (The survivor function
is defined by F̄ (T ) ≡ 1− F (T ), where F is the variable’s cumulative distribution function.)
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not observed directly in the data. The outcome distribution is “mixed” by the dis-
tribution of the unobservable frailty terms; one must integrate out ω to recover the
distribution of outcomes in the data. However, note that the distribution ofω across
the placements observed in the data is not equal to the unconditional distribution
specified in Assumption 1. The distribution of ω across the placements in the data
is conditional on being matched, i.e., to that of ωch |M(c, h) = 1.

The Burr specification in Assumption 2 is a standard parametric assumption
used in duration models (e.g. Lancaster 1990; Wooldridge 2010).13 The Burr dis-
tribution has the main advantage of being flexible yet tractable. It generalizes other
well-known duration distributions, such as the Exponential (γR = 0, αR = 1),
Weibull (γR = 0), and Log-Logistic (γR = 1). A convenient feature of this dis-
tribution is that its integrated hazard rate has a closed form, and hence, also its
survivor function and likelihood. The parameters αR and γR govern the duration-
dependence of the hazard function, which may be flat, monotonic (positive or neg-
ative), or have an inverse-U shape. The function g is a shorthand for the covari-
ates used in the model, all of which are derived from observable characteristics.
Besides including stand-alone covariates, g(x,y) may include interactions between
variables in x and y, and other non-trivial transformations, such as distance mea-
sures. The effect of the covariates on each hazard rate is controlled by the coefficients
in βR. Since the function λR is monotonic in kR, the sign of the coefficients in βR in-
dicate the direction in which the covariates shift the hazard rates. A higher hazard
rate, say λR, implies that a placement is more likely to terminate sooner and due to
termination reason R ∈ R0.

Assumption 1 specifies the joint distribution of ω = (ωR)R∈R0 up to the un-
known covariance matrix Σω. Assuming that ω has zero mean is without loss of
generality, as long as the covariates in the hazard function include a constant. Intu-
itively, the covariance matrix Σω captures the extent of the variation in the observed
outcomes not captured through placement characteristics. Moreover, the correla-
tion between the individual frailty terms introduces dependence among the latent
durations. Such correlation captures, for example, if (a) children who are less likely
to reach permanency are also more likely to experience disruptions (because, say,
they experienced worse conditions during their upbringing, and this has an impact
in their current behavior), or (b) children who are more likely to exit the system

13Another common application of the Burr distribution, also known as the Singh-Maddala distri-
bution, is to model the distribution of income (Singh and Maddala 1976).
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sooner are also more likely to experience disruptions (because, say, foster parents
are less invested in nurturing long and stable relationships with children who will
leave their households sooner).

Collect the parameters of the hazard rates in α = (αR)R∈R0 , γ = (γR)R∈R0 , and
β = (βR)R∈R0 . The conditional outcome distribution, (T̃ , R̃) |I , is fully specified in
Assumption 2 up to the unknown vector of parameters

θT ≡ (α,γ,β).

3.4 Observed Matching

In this section, I consider a generic market (C,H,X,Y), and omit its index i =

1, . . . , n for simplicity. The problem of thematchmaker in (3) is a deterministic prob-
lem over matchings. However, from the econometrician’s perspective, the observed
matching is the realization of a randomvariable since V (c, h) is not fully observable.
Specifically, an econometrician does not observe the frailty terms (ωch)(c,h)∈C×H , or
the taste variation terms, εc = (εcy)y∈Y for every c ∈ C, and ηh = (ηxh)x∈X for every
h ∈ H .

Assumption 3 (Multinomial Probit). The taste variation terms are independent multi-
variate normal random vectors. Namely,

(8) εc ∼ N(0,Σε), and ηh ∼ N(0,Ση),

whereΣε andΣη are positive semidefinite and symmetric matrices. Their sizes are |Y |×|Y |
and |X| × |X|, respectively. Furthermore, εc ⊥ εc′ for all c, c′ ∈ C, and ηh ⊥ ηh′ for all
h, h′ ∈ H . Also, εc, ηh, and ωc′h′ are mutually independent for all (c, h), (c′, h′) ∈ C×H .

Under Assumption 3, the observed matching is a realization of the following
random variable:

(9) M̃(C,H,X,Y) = arg max

 ∑
c∈C,h∈H

M(c, h)π(c, h) + υM : M ∈M(C,H)

 ,

17



where υM is the composite error term given by

(10) υM ≡
∑

c∈C,h∈H
M(c, h)[εcyh + ηxch].

Since the composite error term, υM , follows a multivariate normal distribution, the
matching problem takes the form of a mixed multinomial probit. Below , I show
that the distribution of the individual taste variation parameters, εc and ηy, can
be backed out from the distribution of the composite error term υM . Therefore,
the distribution of the taste variation parameters can be obtained directly from the
matching data.

Assumption 3 also includes several independence assumptions. First, the unob-
servable taste variation components are independent across parties, i.e., εc ⊥ εc′ ,
ηh ⊥ ηh′ , and εc ⊥ ηh. This assumption rules out unobservable interdependencies
among placement assignments by considering preferences over types as indepen-
dent across children and foster homes. Second, the unobservable frailty terms are
independent across placements, i.e., ωch ⊥ ωc′h′ . This assumption rules out un-
observable interdependencies among placement outcomes. Conditional on being
matched, the outcome of (c, h) is independent of that of (c′, h′). Third, the taste
variation terms, εc and ηh, are independent of the frailty terms inωch. This assump-
tion separates the unobservables affecting placement assignments into two groups.
On the one hand, ωch contains unobservables that affect placement assignments
through their expected outcomes (i.e., outcome-relevant unobservables). On the
other hand, εc and ηh capture the rest of the unobservables which affect the match-
ing but are independent of outcomes.

Collect the preference parameters inµ = (µR)R∈R0 ,ϕ = (ϕR)R∈R0 , ϕ̄ = (ϕ̄R)R∈R0 ,
Σ = (Σε,Ση), and define

θM ≡ (µ,ϕ, ϕ̄,Σ).

3.5 Two-by-two Example

In this section, I consider a simple example to illustrate how the model allows for
the matching observed in the data to depend on distinct factors. Consider a market
with two children and two homes, let C = {c1, c2} andH = {h1, h2}. Let x1 and x2
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denote the types of children c1 and c2, respectively, and y1 and y2, those of homes
h1 and h2. Let ε1 = (ε11, ε12) and ε2 = (ε21, ε22) be the unobservable tastes of child
c1 and c2 for home-types y1 and y2, respectively, where I take the liberty of writing
εkj ≡ εckyj . Similarly, let η1 = (η11, η21) and η2 = (η12, η22) be the unobservable
tastes of homes h1 and h2 for child-types x1 and x2, respectively, with ηkj ≡ ηxkhj .
Finally, let (ω11,ω12,ω21,ω22) be the unobservable vectors of frailty terms of each
prospective placement, i.e., ωkj ≡ (ωckhj ,R)R∈R0 for j, k = 1, 2.

Let πkj ≡ π(ck, hj) denote the payoff of assigning each prospective placement,
which is a function of ωkj , for j, k = 1, 2. The set of feasible matchings M(C,H)

contains twomatchings: M , which assigns placements (c1, h1) and (c2, h2), andM ′,
which assigns placements (c1, h2) and (c2, h1). Let V and V ′ denote their respective
aggregate payoffs, i.e.,

V = V (c1, h1) + V (c2, h2) = (π11 + ε11 + η11) + (π22 + ε22 + η22)(11)

V ′ = V (c1, h2) + V (c2, h1) = (π12 + ε12 + η12) + (π21 + ε21 + η21)(12)

Matching M is chosen over M ′ if and only if V ≥ V ′ (the event V = V ′ has zero
probability). In principle, all the terms in (11) and (12) might differ, implying that
observing matching M over M ′ might result for numerous reasons, e.g., the ex-
pected outcome of placement (c1, h2) or (c2, h1) is unfavorable relative to that of
(c1, h1) or (c2, h2) (i.e., π12 or π21 are low relative to π11 or π22) . Alternatively, child
ck might have a higher than usual preference for beingmatchedwith a home of type
yk (i.e., ε11 or ε22 are particularly high), or home hj might have a higher than usual
preference for being matched with a child of type xj (i.e., η11 or η22 are high relative
to η12 or η21).

Now consider the case in which y1 = y2, so that ε11 = ε12 and ε21 = ε22. In such
case, matchingM is chosen overM ′ if and only if

(13) (π11 + η11) + (π22 + η22) ≥ (π12 + η12) + (π21 + η21) .

In this case, even though the unobservable taste terms of both children may differ,
i.e., ε11 6= ε21, the preferences of children over home-types play no role in the de-
termination of the optimal matching. Similarly, if the children are also of the same
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type, x1 = x2, then matchingM is chosen overM ′ if and only if

(14) π11 + π22 ≥ π12 + π21.

In this case, the optimal matching is determined only on the basis of expected out-
comes. Importantly, the event V ≥ V ′ is still random from the econometrician’s
perspective, since (14) depends on the unobservable frailty terms,ωkj for j, k = 1, 2.

3.6 Expected Placement Outcomes

In this section I show in more detail how the payoff function depends on a place-
ment’s expected outcomes. Using (1) and the definition of π(c, h), we obtain

(15) π(c, h) =
∑
R∈R

P(R̃ = R |Ich)
{
µR + ϕRE

[
log T̃ |R̃ = R,Ich

]
+ ϕ̄R log Tem,c

}
.

Therefore, the expected placement outcomes that are relevant for the matchmaker’s
payoff are the termination probability, P(R̃ = R |Ich), and the conditional expected
log-duration, E

[
log T̃ |R̃ = R,Ich

]
, of each termination reason R ∈ R. The ex-

pected placement outcomes can be computed using standard results in survival
analysis (e.g. Lancaster 1990; Kalbfleisch and Prentice 2002).14 Namely, for R ∈ R0,

P(R̃ = R |Ich) =

∫ Tem,c

0
F̄ (T |Ich)λR(T |Ich)dT(16)

E
[
log T̃ |R̃ = R,Ich

]
=

∫ Tem,c

0
log T

[
F̄ (T |Ich)λR(T |Ich

P(R̃ = R |Ich)

]
dT,(17)

where F̄ (T |Ich) denotes the conditional survival function of T̃ , given by

(18) F̄ (T |Ich) = exp

− ∑
R∈R0

γ−2
R log

[
1 + γ2

RkR(Ich)TαR
] .

14To observe why (16) holds, it suffices to note that F̄ (T |Ich)λR(T |Ich) is the likelihood of the
placement having duration T and terminating due to R ∈ R0. The probability of terminating due to
R ∈ R0 is the integral of this likelihood over the support of T̃ , [0, Tem,c]. Similarly, to observewhy (17)
holds, it suffices to note that the quotient in brackets in (17) is the probability density function (pdf) of
T̃ | R̃ = R,Ich. To see this, note that the likelihood of the event (T̃ , R̃) = (T,R) may also be written
as P(R̃ = R | Ich)f(T | R̃ = R,Ich), where f(T | R̃ = R,Ich) denotes the pdf of T̃ | R̃ = R,Ich.
Expression (18) also follows from standard results. Namely, the survivor function of the duration in
a competing risks model is given by F̄ (T ) = exp

{
−
∑
R∈R0

∫ T
0
λR(S)dS

}
.
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Simple calculations show that the resulting integrals in (16) and (17) have no
closed-form.15 Therefore, to compute the payoff function of placement (c, h) ∈
C × H , one needs to compute the integrals in (16) and (17) numerically at Ich =

(xc,yh,ωch), obtain the expected placements outcomes, and replace the respective
values in (15).

In order to observe how the aggregate payoff of matching M ∈ M(C,H) de-
pends on the expected placement outcomes of the assigned placements, note that

∑
c,h

M(c, h)π(c, h) =
∑
R∈R


∑
c,h

M(c, h)P(R̃ = R |Ich)

µR(19)

+

∑
c,h

M(c, h)P(R̃ = R |Ich)E
(

log T̃ |R̃ = R,Ich
)ϕR

+

∑
c,h

M(c, h)P(R̃ = R |Ich) log Tem,c

 ϕ̄R
 ,

where the sums are over c ∈ C, h ∈ H . Hence, conditional on the matchmaker’s
information on every prospective placement, (Ich)(c,h)∈C×H , the problem of the
matchmaker in (9) takes the form of a multinomial probit. The “systematic” or “ob-
served” portion of the aggregate payoff of matching M ∈ M(C,H), given in (19),
is a linear index on the parameters of the matchmaker’s utility function, (µ,ϕ, ϕ̄).
The “covariates” of such linear index are sums of the expected outcomes of all the
assigned placements under M , which, in essence, are non-linear transformations
of the covariates of the assigned placements, {g(xc,yh) : M(c, h) = 1}. The un-
conditional problem of the matchmaker takes the form of a mixed multinomial
probit since one must integrate out the unobservable part of (Ich)(c,h)∈C×H , i.e.,
(ωch)(c,h)∈C×H .

15The fact that these integrals have no closed-form is a common feature among most commonly
used duration distributions. A notable exception, perhaps the only one, is the competing risks model
with symmetric Weibull hazards (all hazards have the same shape parameter). In our case, this corre-
sponds to the case with γR = 0 and αR = α for allR ∈ R0. In such case, the termination probabilities
have the same form as the choice probabilities of the multinomial logit, and are constant across time.
As shall be seen in next sections, this specification, although attractive for its computational tractabil-
ity, is too restrictive for the present case.
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4 Identification

4.1 Outcome Distribution

Absent matching, the data on observed outcomes is sufficient to identify the pa-
rameters of the distribution of outcomes, (Σω,θT ). This observation follows from
Heckman and Honoré (1989), who show that the joint distribution of the latent du-
rations in a competing risks model is non-parametrically identified as long as (1)
the model includes covariates; (2) the hazard rates of the latent durations have at
least one common covariate with a different coefficient in each hazard rate; (3) such
covariate is continuous and unbounded, and (4) the mixing distribution is suffi-
ciently smooth (and satisfies certain regularity conditions at the limit). All of these
conditions are met given Assumptions (1) and (2). The continuous and unbounded
covariates are distance measures, e.g., the distance between children’s schools and
foster homes, which has a termination-specific coefficient.

Once we take into account the matching part of the model, one must recognize
that the distribution ofω across the placements observed in the data, in general, dif-
fers from the unconditional distribution specified inAssumption 1. The distribution
of ω across the placements observed in the data is given by ωch |M̃(c, h) = 1, where
M̃ is the randomvariable defined in (9). Hence, the distribution ofω observed in the
data depends on all the variables involved in the matchmaker’s problem. In order
to identify this distribution, the model relies on the random variation on the exoge-
nous variables (C,H,X,Y). The simplest way to see why this variation is sufficient
to identify the parameters in the unconditional distribution ofω is to consider place-
ments in singleton markets. Note that the distribution ofω for placements assigned
in markets with |C| = |H| = 1 is the same as its unconditional distribution. That is,
if |C| = |H| = 1, the matchmaker’s problem is trivial, which implies that the event
{M(c, h) = 1} is uninformative, and the likelihood of such placement’s outcome
is the same as its unconditional one. More generally, in non-singleton markets, ex-
ogenous variation in (C,H,X,Y) identifies the unconditional mixing distribution
in a similar way in which instruments are used in standard sample selection mod-
els (e.g. Heckman 1979). One needs exogenous variation that affects the likelihood
of being “selected” (i.e., having an observable outcome) that is independent of the
outcome itself.
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Another aspect that differs from the standard competing risks framework is that
the matching may induce endogeneity, which leads to bias when estimating the co-
efficients of the covariates in the hazard functions. This observation was first noted
in the literature by Ackerberg and Botticini (2002) in a setting of contract choice.
Their setup is different to the one here, but the underlying intuition is the same.
In a reduced-form setting, they show that when the outcome of a match (in their
case, a joint sharecropping contract) depends on the characteristics of both parties
involved in the match, the presence of unobservables correlated with the matching
and the outcome lead to endogeneity. The matching affects the joint distribution of
a match’s characteristics, causing them to become correlated with the error term in
a regression. To see this in our case, write the latent duration as follows16

(20) log T̃R = KR − g(x,y)βR/αR − ωR/αR + errorR,

where errorR ≡ log T̃R − E
[
log T̃R |I

]
is an exogenous error term, and

(21) KR ≡ α−1
R

[
ψ(1)− ψ(γ−2

R ) + log γ−2
R

]
is a constant (ψ denotes the digamma function, ψ(x) ≡ d log Γ(x)/dx, where Γ is
the gamma function). In (20), one can see how the covariates affect the latent log-
durations in an analogous way to a linear regression. At first glance, the covariates
in g(x,y) seem to be exogenous. The unconditional distributions of ωR and errorR
are independent of (x,y). However, the joint distribution of (x,y) across the as-
signed placements, (xc,yh) |M̃(c, h) = 1, is determined by the matching. Note that
yh =

∑
h′∈H M̃(c, h′)yh′ . Hence, the covariates derived from y are no longer in-

dependent from the error term −ωR/αR + errorR in (20). A symmetric argument
shows that the same holds for the covariates derived from x.

To fix this endogeneity problem, Ackerberg and Botticini (2002) suggest using
instrumental variables that affect the matching, but are independent of outcomes.
In the present case, this exogenous variation comes through (C,H,X,Y). Two
placements that are observationally equivalent, say (c, h) and (c′, h′) with (xc,yh) =

(xc′ ,yh′), will not have the same mixing distribution if they are assigned in distinct
markets. If (say) the first placement is assigned in market (C,H,X,Y), and the sec-

16Expression (20) is a well-known feature of the Burr distribution (Lancaster 1990). Indeed, the fact
that the log-duration can be written in the form of a linear regression is a characteristic feature of all
accelerated failure time models, the Burr duration model included.
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ond one in (C ′, H ′,X′,Y′), then the distribution of ω | M̃(c, h) = 1, in general, will
be distinct to that of ω | M̃ ′(c′, h′) = 1. The matchings chosen in both markets, M̃
and M̃ ′, are independent random variables with distinct distributions. This identi-
fication strategy has been used in the contracting literature since the seminal con-
tribution of Ackerberg and Botticini (2002) (e.g. Sørensen 2007; Ewens, Gorbenko,
and Korteweg 2019).

4.2 Matching Distribution

The identification of the parameters in the matchmaker’s utility function, (µ,ϕ, ϕ̄),
is straightforward once the mixing distribution is identified, and one sets ϕem =

0. Setting ϕem = 0 is necessary since the time to emancipation appears twice in
u(T,R;Tem) for R = em, see (1). As mentioned above, see (19), the matching prob-
lem is a multinomial probit with index linear on (µ,ϕ, ϕ̄).

Finally, I discuss the identification of the covariance matrices of the taste vari-
ation terms, Σε and Ση. Let σε(y, y′) be the (y, y′)-th entry of Σε, i.e., σε(y, y′) =

cov(εcy, εcy′). Similarly, let ση(x, x′) = cov(ηxh, ηx′h). From (10), note that the vec-
tor of composite error terms, υ ≡ (υM )M∈M(C,H), follows a zero-mean multivariate
normal distribution with covariance structure given by (a detailed proof is given in
Appendix B):

(22) cov(υM , υM ′) =
∑
c∈C

σε(yM(c), yM ′(c)) +
∑
h∈H

ση(xM(h), xM ′(h)),

where I writeM(c) = h⇔M(h) = c⇔M(c, h) = 1. To deal with unmatched chil-
dren in (22), set σε(yM(c), yM ′(c)) ≡ 0 if c is unmatched in eitherM orM ′. Standard
results in discrete choice models (e.g. Train 2009) show that the covariance matrix
of υ is identified up to location and scale normalizations.

Assumption 4 (Covariance Normalization). There exists x0 ∈ X and y0 ∈ Y such that
ση(x0, x) = 0 for every x ∈ X , and σε(y0, y0) = 1.

Assumption 4 imposes the necessary normalizations to identify the covariance
matrices Σε and Ση. First, it imposes a location normalization by assuming that
there exists a child-type, x0, for which the taste variation term of every home equals
to zero. Second, a scale normalization is assumed by assuming there exists a home-
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type, y0, for which the variance of the corresponding taste variation term equals one
for every child.

Proposition 1. Under Assumption 4, the covariance matrices Σε and Ση are identified.

The proof of Proposition 1 is provided in Appendix B. The proof exploits that
the distribution of the taste variation terms is the same regardless of the types of the
other available children and homes in the market. The proof relies on analyzing the
identified elements of the covariance matrix of υ in specific markets with particular
types of children and homes, and use the normalization in Assumption 4 and the
covariance structure in (22) to back out the covariance matrices Σε and Ση.

Collect all the parameters of the model in θ = [Σω,θT ,θM ]. Let Θ ∈ Rdim(θ)

be the parameter space. That is, Θ is the subset of Rdim(θ) that incorporates the
following parameter restrictions: αR > 0, γR ≥ 0 for every R ∈ R0, ϕem = 0, Ση

such that ση(x0, x) = 0 for every x ∈ X , Σε such that σε(y0, y0) = 1, and Σω, Σε and
Ση are positive semidefinite and symmetric matrices.

5 Estimation

In this section, I explain how to obtain a consistent, efficient, and asymptotically
normal estimator of θ. The estimation consists in maximizing the simulated log-
likelihood of the model. To simplify notation, let zch = (xc,yh) denote the observ-
able characteristics of placement (c, h) ∈ Ci × Hi, and group all the observable
characteristics of market i in Zi = (Xi,Yi). Similarly, let Ωi = (ωch)(c,h)∈Ci×Hi .

Fixθ ∈ Θ. Consider an arbitrarymarket i. The likelihoodof observing (Mi,Ti,Ri),
conditional on (Ωi,Zi), is given by:

(23) L(Mi,Ti,Ri |Ωi,Zi,θT ,θM ) = LM (Mi |Ωi,Zi,θM ,θT )LT,R(Ti,Ri |Mi,Ωi,Zi,θT )

where LM (Mi | Ωi,Zi,θM ,θT ) denotes the conditional matching likelihood, and
LT,R(Ti,Ri |Mi,Ωi,Zi,θT ) denotes the conditional outcome likelihood. Both like-
lihood functions are conditional on both unobservable and observable characteris-
tics, Ωi and Zi, respectively. In the next two sections, I spell out both conditional
likelihood functions. Then, I show how to compute the simulated log-likelihood of
the data, which basically amounts to integrating out Ωi from (23).
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5.1 Conditional Matching Likelihood

Write the payoff function π(·) as a function of placement characteristics and param-
eters, i..e, π(c, h) = π(ωch, zch |θT ,θM ). Also, let Mi ≡ M(Ci, Hi) denote the set of
feasible matchings in market i. The conditional matching likelihood is given by the
Probit choice probability:

(24) LM (Mi |Ωi,Zi,θT ,θM ) =

∫
1A(Mi|Ωi,Zi,θT ,θM )(υ)dF (υ),

where υ = (υM )M∈Mi
is the vector of matching composite errors, 1A(υ) denotes the

indicator function of setA (it takesυ as argument), and the setA(Mi | Ωi,Zi,θT ,θM )

is the set of υ’s for which the matchingMi is optimal, i.e.,

(25)

υ : υM − υMi ≤
∑
c,h

[Mi(c, h)−M(c, h)]π(ωch, zch |θT ,θM ) ∀M ∈Mi

 .

5.2 Conditional Outcomes Likelihood

Let LT,R(T,R | ω, z,θT ) denote the conditional likelihood of a single placement
outcome, given by the Burr competing risks likelihood:

(26) LT,R(T,R |ω, z,θT ) = F̄ (T |ω, z,θT )λR(T |ω, z,θT )1R/∈{em,cen}

where F̄ (T |ω, z,θT ) is the survivor function given in (18), and λR(T |ω, z,θT ) the
termination specific hazard-rate in Assumption 2. The conditional outcome likeli-
hood of all the placements in market i is given by:

(27) LT,R(Ti,Ri |Mi,Ωi,Zi,θT ) =
∏

(c,h)∈Mi

LT,R(Tch, Rch |ωch, zch,θT ).

5.3 (Simulated) Log-likelihood

Let G denote the joint distribution of Ωi, i.e., G = ×c,hGch, where Gch ≡ N(0,Σω).
The conditional likelihood of the market-level data (Mi,Ti,Ri) is:

(28) L(Mi,Ti,Ri |Zi,θ) =

∫
LM (Mi |Ωi,Zi,θT ,θM )LT,R(Ti,Ri |Mi,Ωi,Zi,θT )G(dΩi |Σω).
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The log-likelihood of the data is

(29) `n(θ |Z) =
n∑
i=1

logL(Mi,Ti,Ri |Zi,θ).

To estimate θ, I compute the simulated counterpart of `n(θ |Z). There are twomulti-
dimensional integrals within (29) that need to be simulated. The first one is the
integral over υ in the conditional matching likelihood, see (24). To compute this in-
tegral, I draw a sample of Sυ independent draws of the taste variation terms, εc and
ηh. The sample is drawn independently of the model parameters, in order to keep
the simulation draws fixed during the estimation. I use a logit-kernel to smooth the
choice probabilities in (24). It is well known (e.g. Train 2009), that such smoothing
is computationally convenient when estimating multinomial probit models, espe-
cially in cases with a large number of alternatives, as in this case. Let ζ > 0 denote
the smoothing parameter of the logit-kernel. The second integral that needs to be
computed through simulation is the one over Ωi in (28). To compute this integral,
I draw a random sample of Sω independent draws of each ωch = (ωR,ch)R∈R0 , for
(c, h) ∈ Ci ×Hi, i = 1, . . . , n. Likewise, this sample is drawn independently of the
model parameters. Let `Sω ,Sυ ,ζn (θ |Z) denote the simulated counterpart of the log-
likelihood of the data in (29). (See Appendix A for more details on the estimation.)
The estimator of θ is given by:

(30) θ̂SMLE = arg max
θ∈Θ

`Sω ,Sυ ,ζn (θ |Z)

Standard results (e.g. Gourieroux and Monfort 1997) imply that θ̂SMLE is a consis-
tent, efficient, and asymptotically normal estimator for θ, as n, Sω, Sυ → ∞ with
min{Sω, Sυ}/

√
n→∞.

6 Estimation Results

6.1 Empirical Specification

In this section I present the results of the estimation. Due to computational consid-
erations, I consider a small version of the model in terms of the number of covari-
ates I include. The estimates presented below, correspond to a model that includes
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the following placement characteristics: age, type of foster home (relative, county,
agency, or group home), and distance to school. I also include a dummy for children
for which the school’s zip-code is missing (who presumably do not go to school),
and interactions between age and the type of foster home.

I define children and home-types (used to specify the taste variation terms) as
follows. The set of child-types, X , contains two elements differentiating children
who are younger, or older, than 8 years old. The set of home-types, Y , includes one
type for each type of foster home other than relatives. It is not necessary to define a
home-type for relative foster homes since all of them are in singleton markets.

The dataset used in the estimation contains 1,467 markets, and 2,358 assigned
placements. This specification of the model has 39 parameters.

6.2 Parameter Estimates

In this section, I discuss the simulated maximum likelihood estimates of the model
parameters. Table 2 presents the parameter estimates of the outcome distribution,
Σ̂ω and θ̂T . The first two rows of the table present the estimated covariance matrix
of ω. The estimated variance of ωd is higher than that of ωex, implying that the
variance not captured by the covariates is higher for disruption than for exit. The
model also captures a positive correlation between both hazard rates: placements
which the matchmaker considers as having a higher hazard for disruption, are also
considered as having a slightly higher hazard for exiting the system.

The next rows of of Table 2 report the estimated coefficients of each of the covari-
ates in g(x,y) for each hazard rate. A larger coefficient of (say) age on the disruption
hazard implies that placements with older children are more likely to be disrupted
(and sooner) than placements with younger children. The coefficients indicate that
older children have higher disruption hazards in all types of foster homes, other
than group homes. By contrast, age is found to have a minor effect in the hazard for
exiting to permanency in foster homes other than group homes.

Table 3 reports average partial effects of placement characteristics on placement
outcomes. Partial effects are computed for every placement assigned in the data us-
ing expressions (16) and (17). Here, one can see that, on average, placements with
older children are more likely to be disrupted. The marginal effect of one year of
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Table 2: Estimated Parameters of Outcome Distribution (Σω,θT )

(1) (2)
Disruption Exit

Var(ωR) 0.873*** 0.02955
(0.2912) (0.02867)

Cov(ωd, ωex) 0.1573* 0.1573*
(0.08908) (0.08908)

Age At Plac. 0.09872*** -0.01615
(0.01767) (0.01047)

County-FH 2.217*** -0.02375
(0.332) (0.2101)

Agency-FH 2.983*** 0.4547***
(0.2556) (0.1237)

Group Home -2.077** -1.987***
(0.9188) (0.5642)

Age At Plac. × County-FH -0.02272 0.01804
(0.0261) (0.01636)

Age At Plac. × Agency-FH -0.07878*** -0.01007
(0.0194) (0.0124)

Age At Plac. × Group Home 0.2569*** 0.1419***
(0.06179) (0.03894)

Distance To School (zip) 0.02052*** -0.006059***
(0.002471) (0.001724)

Missing Dist. To School 0.9007*** 0.1222
(0.1603) (0.08942)

Constant -8.996*** -6.082***
(0.5408) (0.2132)

Alpha (αR) 1.091*** 0.9665***
(0.07551) (0.03427)

Gamma (γR) 0.9527*** 0.2222
(0.1183) (0.2361)

Number of markets (n) 1467
SMLL -17005.86

Note: Estimated parameters of unobserved heterogene-
ity (Σω) and conditional hazard rates (θT ). Standard
errors in parenthesis. Significance level of parameters:
***p<0.01, **p<0.05, *p<0.01.
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Table 3: Average Partial Effects (APEs)

(1) (2) (3) (4) (5) (6)
P(Disrup) P(Exit) P(Emanc) E(log T |Disrup) E(log T |Exit) E(log T )

Age At Plac. 0.01393 -0.01146 -0.002465 -0.04059 -0.0218 -0.04014
County-FH 0.3168 -0.2661 -0.05067 -0.9689 -0.6275 -0.9266
Agency-FH 0.32 -0.2716 -0.04837 -1.221 -0.8743 -1.174
Group Home 0.1652 -0.1575 -0.007732 0.2872 0.4496 0.3393
Distance To School (zip) 0.004013 -0.003757 -0.0002561 -0.007978 -0.003091 -0.007359
Missing Dist. To School 0.1136 -0.09686 -0.0167 -0.5244 -0.3653 -0.5212
Number of placements 2358

Note: Average partial effects of placement characteristics on expected outcomes. Averages taken across the sample
of assigned placements in the data. The partial effects with respect to continuous variables is taken by considering
a marginal change of one unit.

age on the disruption probability is, on average, 1.4%. Also, placements with older
children are more likely to be disrupted sooner when they do so. Indeed, place-
ments with older children tend to have lower durations overall, regardless of the
termination reason. Placements with relatives are the more stable, they have lower
disruption probabilities than every other type of foster home. They also last less
than every other type of placement except for group homes. Placements in county
and agency foster homes have similar expected outcomes. Both of them are around
30% more likely to be disrupted than placements with relatives. The distance be-
tween a foster home and the child’s school increases the odds of disruption and
overall diminishes a placement’s expected duration.

Table 4 reports goodness of fit measures and the parameters used in the estima-
tion. Overall, the model does good job onmatching the average outcomes observed
in the data. Note that when computing average expected outcomes for goodness
of fit purposes, one must take into account censored placements (those for which
the outcome is not observable due to the sample period). This is done by replac-
ing Tem for min{Tem, Tcen} in expressions (16) and (17). Also, note that the (av-
erage) expected log-duration conditional on emancipation/censoring predicted by
the model is much higher than the emancipation/censoring times observed in the
data. This is reflects that the placements that are more likely to be emancipated or
censored are precisely the ones that have lower times to emancipation or are closer
to the end of the sample period.

Table 5 reports the estimated parameters of the matchmaker’s utility function.
Overall, the matchmaker has a higher payoff from placements that exit to perma-
nency. The least desirable termination reason is disruption. The marginal utility of
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Table 4: Goodness of Fit and Estimation Parameters

(1) (2)
Predicted Sample

P(Disruption) 0.514 0.5093
P(Exit) 0.4303 0.4237
P(Emanc/Cens) 0.05568 0.06701
E(log T |Disruption) 4.482 4.141
E(log T |Exit) 4.721 4.994
E(log T |Emanc/Cens) 7.19 5.534
E(log T ) 4.615 4.596
Number of markets (n) 1467
Number of assigned placements 2358
Number of prospective placements 8900
SMLL -17005.86
Sω 50
Sυ 50
ζ 1e-01
dim(θ) 39

Note: Average predicted outcomes and sample aver-
age outcomes. Averages taken across the sample of as-
signed placements in the data. The number of assigned
placements in the data is equal to

∑
i

∑
c,hMi(c, h).

The number of prospective placements is equal to∑
i

∑
c,h |Ci| × |Hi|. SMLL gives the value of the sim-

ulated log-likelihood at the estimated vector of parame-
ters. Sω , Sυ , and ψ are the parameters of the simulated
log-lilkelihood. dim(θ) refers to the number of parame-
ters estimated.
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duration is negative, regardless of termination reason. The magnitude of the pa-
rameters show that the matchmaker is not willing to trade-off a placement exiting
to permanency for it being disrupted, regardless of the time to reach permanency
and the time spent in a disruptive placement. To see this, note that if a placement
is to be disrupted, the matchmaker prefers for it to be disrupted as soon as possi-
ble. However, even if a placement is disrupted right away, T = 1, the payoff to the
matchmaker is lower than if the child exits to permanency, regardless of the time
the child needs to wait before exiting.

The marginal utility of the time to emancipation is positive conditional on du-
ration, but negative conditional on exiting to permanency. This captures that the
valuation of the matchmaker for age differs depending on the termination reason.
An interpretation of this preference is that the time to disruption and permanency
(i.e., the time that it takes for a placement to be disrupted or exit to permanency, con-
ditional on that being its termination reason) is valued differently depending on the
age of children. The sign of the coefficients indicate that the matchmaker’s prefer-
ence against children spending time in placements that will be disrupted is stronger
for younger children than for older ones. By contrast, the matchmaker’s tolerance
for children waiting to exit to permanency is higher for younger children than for
older ones. The magnitude of the coefficients allow to compute the marginal rate
of substitution between duration and age. For instance, consider a child of average
age, 8.7 years old, who is in a placement known to be disrupted. And set the dis-
ruption time at its conditional average, 5.4 months (165 days). A placement that is
know to be disrupted, but has a childwho is younger by one year, generates a higher
payoff for the matchmaker as long as its duration is less than 5.9 months (180 days),
9.31% more. If the placement is known to be terminated because the child will exit
to permanency, the opposite obtains. Again, consider a placement with a child who
is 8.7 years old and, who is known will exit to permanency in the average time, 10
months (304 days). A placement with a child who is also known will exit to perma-
nency, but who is one year older, generates a higher payoff to the matchmaker, as
long as the child exits to permanency in no more than 10.2 months (312 days), 2.6%
more.

Table 6 reports the estimated covariance matrices of the taste variation terms.
Overall, the estimates show no significance variance in the taste variation parame-
ters. Intuitively, this reflect that, given the current specification, the expected out-
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Table 5: Estimated Parameters of Matching Utility (θM )

(1) (2) (3)
Disruption Exit Emancipation

µR —MgU. Term. Reason -2.908*** 2.449** -2.057***
(0.6972) (1.091) (0.7183)

ϕR —MgU. Duration -0.3549*** -0.5265*** 0†
(0.1005) (0.167) (0)

ϕ̄R —MgU. Emanc. Time 0.3093*** -0.1179 0.009985
(0.06172) (0.09607) (0.01364)

Number of markets (n) 1467
SMLL -17005.86

Note: Estimated parameters ofmatching utility function (θM ), where
u = µR + ϕR log T + ϕ̄R log Tem. Standard errors in parenthesis.
Significance level of parameters: ***p<0.01, **p<0.05, *p<0.01. † in-
dicates fixed parameter (i.e. not estimated).

Table 6: Estimates of the covariance matrix of the taste variation shocks (Σ)

Σ̂ε =



0† 0† 0†
(0) (0) (0)

0† 0.0002013 −0.001219

(0) (0.0009768) (0.003017)

0† −0.001219 0.01181

(0) (0.003017) (0.01172)


|Y |×|Y |

Σ̂η =


0† 0†
(0) (0)

0† 0.0001188

(0) (0.000899)


|X|×|X|

Note: Estimated parameters of the covariance matrices of taste variation shock of children over home types, εc =

(εcy)y∈Y ∼ N(0,Σε), and of the covariance matrix of the taste variation shock of homes over children types,
ηh = (ηxh)x∈X ∼ N(0,Ση). Standard errors in parenthesis. Significance level of parameters: ***p<0.01, **p<0.05,
*p<0.01. † indicates fixed parameter (i.e. not estimated).

comes of placements seem to be sufficient in order to predict placement assign-
ments.17

7 Counterfactual Exercises

7.1 Counterfactual I —Market Thickness

In this section, I analyze the effect of policies aimed at improving outcomes by in-
creasing market thickness. Market thickness may be increased along two dimen-

17A caveat of the estimates in Table 6 is that the normalizations implemented in this specification
do not correspond to the ones in Assumption 4, which key in proving Proposition 1. The estimates in
Table 6 may be close to zero because the normalizations are not doing a good job in identifying the
parameters. Further estimations will implement the normalization specified in Assumption 4.
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sions. First, I consider the case in which placements every D > 1 days, instead of
daily as is done in the field (D = 0). I consider policies with D ≤ 15. Second, I
consider the case in which non-relative placements are assigned across all regional
offices together, instead ofwithin them as is done in the field. I also consider the two
types of policies together, i.e., assigning placements every D > 1 days and pooling
the children and foster homes from all regional offices into a county-wide market.

By design, the aggregate payoff of the matchmaker is higher when markets are
thinker. The reason is because the original matching is always feasible when the
market is thicker. The effect on the expected outcomes of placements is controlled
by the matchmaker’s payoff function, which determines which placements are as-
signed in the counterfactual markets.

Figure 1 plots the average predicted termination probabilities across the coun-
terfactualmarkets. The value ofD is plotted in the x-axis. The solid lines correspond
to the termination probabilities in the case in which markets are formed within of-
fices. The dashed lines to the case in which markets are pooled across regional
offices. The plots also include a dotted line, which is constant acrossD. The dotted
line corresponds to the “benchmark” case in which all placements are assigned at
once, D = ∞, and regional offices are pooled together. The average predicted out-
comes in the benchmark case correspond to the ones of the best placements (from
the matchmaker’s perspective) that can be formed in the full dataset.

The baseline values of the termination probabilities are the values at D = 0,
i.e., these values correspond to the predicted probabilities of the model with the
assignment observed in the data. From the top panel of Figure 1, one can see that
in thicker markets the average disruption probability is lower, and that of exiting
to permanency or disruption is higher. When the pools of available children and
foster homes are larger, the matchmaker is able to assign placements with lower
disruption probabilities. However, note that the gains from thicker markets come
almost exclusively from pooling regional offices together. When matchings are as-
signed daily (D = 0) but regional offices are pooled together, the disruption rates
diminishes from 52.61% to 48.43%. In terms of expectd number of placements per
child, this is equivalent from going from 2.11 to 1.94.18

18The average disruption probability can be seen as the probability of a “failure” in a series of
discrete dichotomic random draws. In which case, the number of placements per child follows a
geometric distribution (“number of trials needed to get one success” ). If pd denotes the disruption
probability, the expected number of placements per child is 1/(1− pd).
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Figure 1: Counterfactual I — Average Predicted Termination Probabilities
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Note: Plot of the average predicted termination termination probabilities. Averages taken across all assigned place-
ments in each counterfactual. The x-axis plots the value of D, the number of non-matching days in a matching
period. Solid lines correspond to counterfactuals in which markets are defined by regional offices; dashed lines
to ones in which regional offices are pooled together into the same markets. The benchmark case (dotted line)
corresponds to the case in which regional offices are pooled together into markets andD =∞.
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Figure 2 is analogous to Figure 1, but it plots the average predicted conditional
durations of placements. Here, one can see that the average duration of placements
may be higher or lower than the baseline in thicker markets. Interestingly, when
offices are pooled together and placements are assigned daily, the matchmaker as-
signs placements with higher expected durations than both the baseline and bench-
mark cases. The reason is because the matchmaker is willing to trade-off duration
(which it dislikes) with better termination probabilities. The same can be seen in
Figure 3, which plots the average expected duration.

The top panel of Figure 4 plots the average distance to school across placements
in thickermarkets. The average distance between foster homes and children’s schools
is cut in 54% when offices are pooled together into county wide-markets. The aver-
age distance goes from 20.43 to 9.5 miles. From the plot, one can see that the gains
resulting from lower disruption probabilities follows the same patters as the dis-
tance to school: the gains from pooling offices together outweighs those obtained
fromdelaying placement assignments. Finally, the bottomplot of Figure 4 shows the
average time that children waiting before being assigned placements. As expected,
delaying placements increases this figure monotonically.

7.2 Counterfactual IIa — Relative Foster Homes

In this section, I analyze the effect that relatives have on average expected outcomes.
Specifically, I consider an increase in the share of the foster homes that are relatives
across allmarkets. I analyze both an increase in the intensive and extensivemargins.
Let δrel ∈ (0, 1) be the increase in the share of foster homes that are relatives. I
consider policies with δrel ≤ 0.25; δrel = 0 corresponds to the baseline case, in
which the supply of foster homes is the same as the one observed in the data.

I increase the share of relative homes as follows. First, I estimate a binary logit
model that predicts whether a child has a relative home, or not, as a function of its
characteristics. Let n∗rel = bδrel ∗nrelc, where nrel denotes the number of placements
with relatives in the data. Then, from the population of non-relative placements in
the data, I select n∗rel at random, weighting them by the predicted probability that
each of them had a relative available. That is, I select children who did not had a
relative placement, but had a higher likelihood of having it, with higher probability.
In the case of the intensive margin, I convert the foster homes of the selected place-
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Figure 2: Counterfactual I — Average Predicted Conditional Expected Duration
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Note: Plots of the average predicted conditional expected durations. Averages taken across all assigned placements
in each counterfactual. The x-axis plots the value of D, the number of non-matching days in a matching period.
Solid lines correspond to counterfactuals in which markets are defined by regional offices; dashed lines to ones in
which regional offices are pooled together into the same markets. The benchmark case (dotted line) corresponds
to the case in which regional offices are pooled together into markets andD =∞.
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Figure 3: Counterfactual I — Average Predicted Expected Duration
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Note: Plot of the average predicted expected duration. Averages taken across all assigned placements in each
counterfactual. The x-axis plots the value of D, the number of non-matching days in a matching period. Solid
lines correspond to counterfactuals in which markets are defined by regional offices; dashed lines to ones in which
regional offices are pooled together into the same markets. The benchmark case (dotted line) corresponds to the
case in which regional offices are pooled together into markets andD =∞.

ments into relative homes (leaving all other placement characteristics fixed), and as-
sign them to new singleton markets with the corresponding child. In the extensive
margin case, I create a duplicate of the foster homes of the selected children. Then,
I convert the duplicated home to a relative home (leaving all the other placement
characteristics fixed), and assign it with the corresponding child to a new singleton
market. The difference between the intensive and extensivemargins is that the set of
available foster homes for the rest of the children in the market remains unchanged
in the extensive margin, while it is reduced by one home in the intensive margin.

Figure 5 report the predicted average termination probabilities in the distinct
counterfactuals. The parameter δrel is on the x-axis. One can observe that a higher
share of relative homes, in both the intensive and extensive margins, has a sizable
effect on termination probabilities. Overall, the disruption probability diminishes
and the one of exiting to permanency increases. The adjustment is more gradual in
the extensive margin. In the intensive margin, the disruption probability goes from
52.6% at δrel = 0 to 45.82% at δrel = 0.25 (equivalent to going from an average of
2.1 placement per child to 1.84). In the extensive margin, the change is from 52.6%
to 47.8$ (equivalent to going from an average of 2.1 placement per child to 1.91).

38



Figure 4: Counterfactual I — Average Distance To School and Waiting Time
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Note: Plots of the average distance to school and waiting time. Averages taken across all assigned placements in
each counterfactual. The x-axis plots the value ofD, the number of non-matching days in amatching period. Solid
lines correspond to counterfactuals in which markets are defined by regional offices; dashed lines to ones in which
regional offices are pooled together into the same markets. The benchmark case (dotted line) corresponds to the
case in which regional offices are pooled together into markets andD =∞.
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The difference between both margins has to do in how the rest of the children are
being placed in the non-relative placements. Figure 6 shows the analogous plots
for conditional durations. Overall, placements tend to last longer when the share of
relative foster homes in the system is increased.

7.3 Counterfactual IIb — Agency Foster Homes

In this section, I analyze the effect that agency foster homes have on average ex-
pected outcomes. Specifically, I consider an increase in the share of foster homes
that come through non-profit agencies across all markets. I analyze both an increase
in the intensive and extensive margins. Let δah ∈ (0, 1) be the increase in the share
of foster homes that are agency homes. I consider policies with δah ≤ 0.25; δrel = 0

corresponds to the baseline case, in which the supply of foster homes is the same as
the one observed in the data.

I increase the share of relative homes as follows. Let n∗ah = bδah ∗ nahc, where
nah denotes the number of placements with agency homes in the data. Then, from
the population of non-relative placements in the data, I select n∗ah uniformly at ran-
dom, keeping the relative share of the other types of non-relative placements fixed.
In the case of the intensive margin, I convert the foster homes of the selected place-
ments into relative homes (leaving all other placement characteristics fixed). In the
extensive margin case, I create a duplicate of the foster homes of the selected chil-
dren. Then, I convert the duplicated home to a relative home (leaving all the other
placement characteristics fixed). The difference between the intensive and extensive
margins is that the set of available foster homes in the market has the same number
of homes in the intensive margin (with one converted into an agency home), and in
the extensive margin it has an extra agency home.

Figure 8 report the predicted average termination probabilities in the distinct
counterfactuals. The parameter δah is on the x-axis. One can observe that a higher
share of agency homes, in both the intensive and extensive margins, has a minor
effect on termination probabilities. Interestingly, the direction of the effects fo in
opposite directions in the intensive and the extensivemargins. In the intensivemar-
gin, the disruption probability diminishes and the one of exiting to permanency in-
creases.The disruption probability goes from 52.6% at δrel = 0 to 51% at δrel = 0.25

(equivalent to going from an average of 2.1 placement per child to 2). In the ex-
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Figure 5: Counterfactual IIa-Relatives — Average Predicted Termination
Probabilities
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Note: Plot of the average predicted termination termination probabilities. Averages taken across all assigned place-
ments in each counterfactual. The x-axis plots the value of δrel, the factor by which the supply of Relative Foster
Homes is adjusted. Solid lines correspond to counterfactuals in which the supply of Relative Foster Homes is in-
creased in the intensive margin; dashed lines to ones in which the supply of Relative Foster Homes is increased in
the extensive margin.
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Figure 6: Counterfactual IIa-Relatives — Average Predicted Conditional Expected
Duration
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Note: Plots of the average predicted conditional expected durations. Averages taken across all assigned placements
in each counterfactual. The x-axis plots the value of δ, the factor by which the supply of Relative Foster Homes
is adjusted. Solid lines correspond to counterfactuals in which the supply of Relative Foster Homes is increased
in the intensive margin; dashed lines to ones in which the supply of Relative Foster Homes is increased in the
extensive margin.
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Figure 7: Counterfactual IIa-Relatives — Average Predicted Expected Duration
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Note: Plot of the average predicted expected duration. Averages taken across all assigned placements in each
counterfactual. The x-axis plots the value of δ, the factor by which the supply of Relative Foster Homes is adjusted.
Solid lines correspond to counterfactuals inwhich the supply of Relative Foster Homes is increased in the intensive
margin; dashed lines to ones in which the supply of Relative Foster Homes is increased in the extensive margin.

tensive margin, the average disruption probability increases, it goes from 52.6% to
53.8$ (equivalent to going from an average of 2.1 placement per child to 2.2). Figure
6 shows the analogous plots for conditional durations.

8 Conclusion

Often, the allocation of resources is the result of individual choices made within
exogenously-designed institutions. This paper presents a framework to study how
placements are assigned in foster care. The model aims to capture how social work-
ers assign placements in the field. Themodel incorporates key institutional features
of placement assignment in foster care: (1) children need to be placed with relatives
whenever possible; (2) social workers need to prioritize the location of prospective
foster homes in relation to the children’s schools, and (3) social workers have dis-
cretion in how to weigh all the factors that contribute to successful placements.

A key aspect of the model is that it incorporates the endogeneity arising from
placement assignments being affected by unobservables correlated with outcomes.
The main identification strategy of the paper is to rely on the exogenous variation
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Figure 8: Counterfactual IIb-Agency-FH — Average Predicted Termination
Probabilities
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Note: Plot of the average predicted termination termination probabilities. Averages taken across all assigned place-
ments in each counterfactual. The x-axis plots the value of δ, the factor by which the supply of Agency Foster
Homes is adjusted. Solid lines correspond to counterfactuals in which the supply of Relative Foster Homes is in-
creased in the intensive margin; dashed lines to ones in which the supply of Agency Foster Homes is increased in
the extensive margin.
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Figure 9: Counterfactual IIb-Agency-FH — Average Predicted Conditional
Expected Duration
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Note: Plots of the average predicted conditional expected durations. Averages taken across all assigned placements
in each counterfactual. The x-axis plots the value of δ, the factor by which the supply of Relative Foster Homes is
adjusted. Solid lines correspond to counterfactuals inwhich the supply of Agency Foster Homes is increased in the
intensive margin; dashed lines to ones in which the supply of Agency Foster Homes is increased in the extensive
margin.
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Figure 10: Counterfactual IIb-Agency-FH—Average Predicted Expected Duration
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Note: Plot of the average predicted expected duration. Averages taken across all assigned placements in each
counterfactual. The x-axis plots the value of δ, the factor by which the supply of Agency Foster Homes is adjusted.
Solid lines correspond to counterfactuals in which the supply of Agency Foster Homes is increased in the intensive
margin; dashed lines to ones in which the supply of Relative Foster Homes is increased in the extensive margin.

across the dates and geographic regions at which children enter foster care. The
empirical exercise uses a novel dataset of confidential foster care record from Los
Angeles County, California. The parameter estimates of the model show that ex-
pected outcomes are significant factors when assigning placements. Overall, social
workers assign the placements that are less likely to be disrupted, and in which it is
more likely that the children exit to permanency. Another key variable when deter-
mining assignments is the conditional expected duration of prospective placements.
Social workers aim to assign placements that, conditional on their termination rea-
son, will have the lowest possible durations.

Through counterfactual exercises, I show the effect of market thickness and the
presence of different types of foster homes on the distribution of outcomes. A key
contribution of this paper is to quantify the gains, in terms of better placement out-
comes, resulting from thicker markets if foster care. It is shown that the gains due to
market thickness are greater when thickness is increased geographically (by assign-
ing placements throughout the county) than time-wise (by delaying placements).
Specifically, the model predicts that if placements were assigned in county-wide
markets, the expected number of placements children would experience in foster
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care would diminish by 8%, and the average distance from foster homes to chil-
dren’s schools would be reduces by 54%.

As a final note, it is worthwhile emphasizing how the findings of this paper sup-
ports the view that social workers have a good understanding of which placements
are less likely to be disrupted, and seem to do a pretty good job when it comes to
assigning them. They assign the placements that are more likely work. However,
at the system level, the model shows that the current state of the system does not
facilitate the coordination between the distinct regional offices. The paper finds ev-
idence that by being better at coordinating with one another, regional offices would
be able to assign better placements for children and foster parents.
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A Appendix: Estimation Details

In this section, I show the steps to compute the simulated log-likelihood `Sω ,Sυ ,ψn (θ |
Z) in detail, see (30).

1. Simulate the conditional matching likelihood, using a logit-kernel:

• Write the surplus of matchingM ∈Mi as:

Vsυ(M | Ωi,Zi,θT ,θM ) =
∑
c,h

M(c, h)
[
π(ωch, zch |θT ,θM ) + εsυcyh + ηsυxch

]
,

where εsυc =
(
εsυcy
)
y∈Y and ηsυh =

(
ηsυxh
)
x∈X are simulated structural er-

rors.

• To simulate εsυc and ηsυh , let Γε and Γη be the Cholesky factors of Σε and
Ση, respectively. Draw fixed simulated values

ε̃sυc ∼ iid N(0, I|Y |), sυ = 1, . . . , Sυ,

η̃sυh ∼ iid N(0, I|X|), sυ = 1, . . . , Sυ,

for every c ∈ Ci and h ∈ Hi. Set εsυc = Γεε̃
sυ
c , and ηsυh = Γηη̃

sυ
h .

• Define the simulated counterpart of the conditional matching likelihood
LM (Mi |Ωi,Zi,θT ,θM ) as

Lsυ ,ψM (Mi |Ωi,Zi,θT ,θM ) =
exp {Vsυ(Mi | Ωi,Zi,θT ,θM )/ψ}∑

M∈Mi
exp {Vsυ(M | Ωi,Zi,θT ,θM )/ψ}

,
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where ψ > 0 is the smoothing constant of the logit-kernel.

• Note that Lsυ ,ψM = 1 for all Mi ∈ Mi if |Mi| = 1. Markets with a single
prospective placement do not contribute to the matching likelihood.

• As ψ → 0, Lsυ ,ψM tends to the indicator function over the choice set, given
the simulated errors. Formally,

lim
ψ→0
Lsυ ,ψM (Mi |Ωi,Zi,θT ,θM ) = 1A(Mi|Ωi,Zi,θT ,θM )(υ

sv),

where υsv = (υsvM )M∈Mi with υsvM =
∑

c,hM(c, h)
[
εsυcyh + ηsυxch

]
.

2. Integrate over Ωi.

• To simulate ωch, let Γω be the Cholesky factor of Σω. Draw fixed simu-
lated values

ω̃sωch ∼ iid N(0, I|R0|), sω = 1, . . . , Sω,

for every (c, h) ∈ Ci×Hi. Set ωsωch = Γωω̃
sω
ch , and Ωsω

i =
(
ωsωch

)
(c,h)∈Ci×Hi

.

• The conditional outcome likelihood LT,R(Ti,Ri |Mi,Ω
sω
i ,Zi,θT ) has a

closed-form.

• Define the simulated counterpart of themarket-level likelihoodL(Mi,Ti,Ri |
Zi,θ) as

LSω ,Sυ ,ψ(Mi,Ti,Ri |Zi,θ) =
1

SωSυ

Sω∑
sω=1

Sυ∑
sυ=1

Lsυ ,ψM (Mi |Ωsω
i ,Zi,θT ,θM ) · · ·(SL)

· · · LT,R(Ti,Ri |Mi,Ω
sω
i ,Zi,θT )

3. Add over markets and take logs:

• Finally, define:

`Sω ,Sυ ,ψn (θ |Z) =
n∑
i=1

logLSω ,Sυ ,ψ(Mi,Ti,Ri |Zi,θ)
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B Appendix: Matching Covariance

Claim 1. The covariance matrix of the composite error υ = (υM )M∈M(C,H) is given by:

(31) cov(υM , υM ′) =
∑
c∈C

σε(yM(c), yM ′(c)) +
∑
h∈H

ση(xM(h), xM ′(h)).

Proof of Claim 1: Define A(c, h) ≡ εcyh + ηxch. Note that

A(c, h)A(c′, h′) = [εcyh + ηxch][εc′yh′ + ηxc′h′ ]

= εcyhεc′yh′ + εcyhηxc′h′ + ηxchεc′yh′ + ηxchηxc′h′

From Assumption 3, it follows

EA(c, h)A(c′, h′) = 1{c = c′}Eεcyhεc′yh′ + 1{h = h′}Eηxchηxc′h′

= 1{c = c′}σε(yh, yh′) + 1{h = h′}ση(xc, xc′).

Since EυM = EυM ′ = 0,

cov(υM , εM ′) = EυMυM ′

= E

∑
c,h

M(c, h)A(c, h)

∑
c′,h′

M ′(c′, h′)A(c′, h′)


=
∑
c,h

∑
c′,h′

M(c, h)M ′(c′, h′)EA(c, h)A(c′, h′)

=
∑
c

∑
h,h′

M(c, h)M ′(c, h′)σε(yh, yh′)

+
∑
h

∑
c,c′

M(c, h)M ′(c′, h)ση(xc, xc′).

Note that
∑

h,h′M(c, h)M ′(c, h′)σε(yh, yh′) = σε(yh, yh′) forh andh′ such thatM(c, h) =

M ′(c, h′) = 1, which is equivalent to σε(yM(c), yM ′(c)). Using a symmetric argument
in the second term yields the desired expression:

cov(υM , εM ′) =
∑
c∈C

σε(yM(c), yM ′(c)) +
∑
h∈H

ση(xM(h), xM ′(h)).

Q.E.D.
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Proof of Proposition 1: For an arbitrary market with choice setM(C,H), let

(32) υ̃M = υM − υM0 ∀M ∈M(C,H) \ {M0},

for some fixedM0 ∈ M(C,H). Standard results (e.g. Train 2009) show that the co-
variancematrix of υ̃ ≡ (υ̃M )M∈M(C,H)\{M0} is identified up to a scale normalization.
From (22), one can write the elements in the covariance matrix of υ̃ as follows:

cov(υ̃M ′ , υ̃M ′′) = cov(υM ′ − υM0 , υM ′′ − υM0)(33)

= cov(υM ′ , υM ′′) + var(υM0)− cov(υM ′ , υM0)− cov(υM ′′ , υM0)

=
∑
c

σε(yM ′(c), yM ′′(c)) +
∑
h

ση(xM ′(h), xM ′′(h))

+
∑
c

σε(yM0(c)) +
∑
h

ση(xM0(h))

−

[∑
c

σε(yM0(c), yM ′(c)) +
∑
h

ση(xM0(h), xM ′(h))

]

−

[∑
c

σε(yM0(c), yM ′′(c)) +
∑
h

ση(x0M(h), xM ′′(h))

]
,

var(υ̃M ′) =
∑
c

σε(yM ′(c)) +
∑
h

ση(xM ′(h))(34)

+
∑
c

σε(yM0(c)) +
∑
h

ση(xM0(h))

− 2

[∑
c

σε(yM0(c), yM ′(c)) +
∑
h

ση(xM0(h), xM ′(h))

]
,

where I write ση(x) ≡ ση(x, x) and σε(y) ≡ σε(y, y) to simplify notation.

First, I show how to identify the elements of the covariance matrix Ση. Consider
a market with three children, whose types are given by x, x′, x′′ ∈ X , and a single
home, whose type is y ∈ Y . The set of feasible matchings in this market contains
three matchings: M0 = (x, y),M1 = (x′, y), andM2 = (x′′, y), where I abuse nota-
tion and define the matching over the types of the children and homes. Using (33)
and (34), one may see that the identified elements in the covariance matrix of υ̃ in
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this market are given by:

σ∗1 ≡
cov(υ̃M1 , υ̃M2)

var(υ̃M1)
=
ση(x

′, x′′) + σε(y) + ση(x)− ση(x, x′)− ση(x, x′)
2σε(y) + ση(x) + ση(x′)− 2ση(x, x′)

(35)

σ∗2 ≡
var(υ̃M2)

var(υ̃M1)
=

2σε(y) + ση(x) + ση(x
′′)− 2ση(x, x

′′)

2σε(y) + ση(x) + ση(x′)− ση(x, x′)
.(36)

Let x = x0 and y = y0, so

(37) σ∗1 =
ση(x

′, x′′) + 1

2 + ση(x′)
.

Since ση(x′, x′′) = ση(x
′) for x′′ = x′, (37) identifies ση(x′) for an arbitrary x′ ∈ X .

Note that this implies that (37) also identifies ση(x′, x′′) for arbitrary x′, x′′ ∈ X . This
argument obtains since the distribution of ηh is independent of the specific market
we consider, all of which are independent.

Second, I show how to identify the covariance matrix Σε. Consider a market
with three children, whose types are given by x, x′, x′′ ∈ X , and two homes, whose
types are y, y′ ∈ Y . In this market, M(C,H) contains six matchings. LetM0 be the
matching that assigns placements (x, y) and (x′, y′); M1 the one that assigns (x, y)

and (x′′, y′), andM2 the one assigning (x′′, y) and (x′, y′). Using (33), compute the
following covariance:

cov(υ̃M1 , υ̃M2) = σε(y, y
′) + ση(x, x

′′) + ση(x
′, x′′)

+ σε(y) + σε(y
′) + ση(x) + ση(x

′)

−
[
σe(y) + ση(x) + ση(x

′, x′′)
]

−
[
σε(y

′) + ση(x, x
′′) + ση(x

′)
]

= σε(y, y
′).

LetM3 be the matching assigning the placements (x′, y) and (x, y′), and note that:

(38) cov(υ̃M1 , υ̃M3) = σε(y
′) + σε(y, y

′) + ση(x
′) + ση(x

′, x′′)− 2ση(x, x
′′).
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Hence, two elements of the covariance matrix of υ̃ in this market, are given by:

σ∗3 =
cov(υ̃M1 , υ̃M2)

var(υ̃M1)
=

σε(y, y
′)

2σε(y′) + ση(x′) + ση(x′′)− 2ση(x′, x′′)
(39)

σ∗4 =
cov(υ̃M1 , υ̃M3)

var(υ̃M1)
=
σε(y

′) + σε(y, y
′) + ση(x

′) + ση(x
′, x′′)− 2ση(x, x

′′)

2σε(y′) + ση(x′) + ση(x′′)− 2ση(x′, x′′)
.(40)

Since Ση is identified, the previous two equations define the 2-by-2 system of equa-
tions:

σ∗3 =
σε(y, y

′)

2σε(y′) +H
(41)

σ∗4 =
σε(y

′) + σε(y, y
′) +K

2σε(y′) +H
,(42)

whereH andK are known constants. Identification of Σε follows from noting that
the above system of equations has a unique solution for σε(y′) and σε(y, y′), in terms
of identified quantities. Q.E.D.
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