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Abstract

Thick two-sided matching platforms, such as the room-rental market, face the

challenge of showing relevant objects to users to reduce search costs. Many plat-

forms use ranking algorithms to determine the order in which alternatives are shown

to users. Ranking algorithms may depend on simple criteria, such as how long a

listing has been on the platform, or incorporate more sophisticated aspects, such as

personalized inferences about users’ preferences. Using rich data on a room rental

platform, we show how ranking algorithms can be a source of unnecessary conges-

tion, especially when the ranking is invariant across users. Invariant rankings induce

users to view, click, and request the same rooms in the platform we study, greatly

limiting the number of matches it creates. We estimate preferences and simulate

counterfactuals under different ranking algorithms varying the degree of user per-

sonalization and variation across users. In our case, increased personalization raises

both user match utility and congestion, which leads to a trade-off. We find that the

current outcome is inefficient as it lies below the possibility frontier, and propose

alternatives that improve upon it.
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1 Introduction

Two-sided matching markets have experienced a significant surge in relevance in recent

years, reshaping various industries and fundamentally altering the dynamics of supply

and demand. The advent of digital platforms and the proliferation of online interactions

have propelled the prominence of two-sided markets to new heights. Examples include

ride-sharing and transportation, dating and social networking or, as our present study,

accommodation and hospitality. Successful platforms require careful analysis of factors

that may affect their capacity to successfully bring together and match both sides of

markets. Various design aspects that can have an impact on platforms’ effectiveness

need to be continuously revisited. The present paper does exactly that; using a specific

application, we present a problem and a set of potential solutions applicable to a wide

set of platforms.

Given the limited amount of attention users have to process the increasing number of al-

ternatives in online marketplaces, platforms typically employ computational algorithms

that steer users towards options considered good matches for them. In this paper, we

use rich data on a leading room rental platform to show how currently used algorithms

may induce an unnecessary amount of congestion and, in doing so, limit a platform’s

capacity to exhaust the set of potential matches in a market.

An unintended consequence of the steering algorithms employed by platforms is that

they may create additional unnecessary congestion in the market. As in many other

dynamic platforms, in the platform we study an algorithm is implemented to prioritize

recent and reliable options for users to be matched with. The algorithm only generates

a partial order, which ties are then broken randomly to generate a strict ranking of all

apartments. Crucially, the ties are broken using the same random number across all

users. This induces users to view, click and request a relatively small set apartments

while ignoring similarly valuable ones. We find that an algorithm meant to steer renters

towards apartments offered by reliable sellers, leads to congestion in the sense that many

users end up clicking on the same small set of apartments, while they would have been

equally or even better off exploring alternative apartments which are ranked lower by

the platform’s algorithm and hence do not receive enough attention and consideration

from users.

The problem in the current algorithm comes from two main sources. The first has to

do with the fact that the order in which rooms are shown greatly determines what

individuals view, click and request, which affects final matches. The second is driven

by the fact that different users may have different preferences and hence there is a loss

from having all users search in the same order. Hence, there are at least two possible

solutions. The first and computationally simpler is to have the complete rank be defined

by the partial order where ties are broken using a different random number for different
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users. The second involves personalizing the ranks for specific subgroups to ensure that

the rank responds more clearly to individual preferences.

In our paper we analyze the trade-offs from personalizing more according to individual

preferences to target demand to most desired rooms versus creating more randomness

in the way rooms are ranked. While highly personalized algorithms steer users to highly

preferred alternatives, they may cause congestion if users have similar preferences, and

may reduce it if individuals have heterogeneous preferences. Introducing randomization

to ranking algorithms alleviates congestion by steering users to different rooms. The

relationship between maximal utility when matched versus congestion is the crux of our

analysis: can we reduce congestion without penalising users by showing them different

rooms?

We estimate preferences and simulate counterfactuals under different ranking algorithms

which vary in the degree of user variation and personalization. We find a trade-off be-

tween user match utility and congestion, as increased personalization raises both of them.

Moreover, the status quo algorithm used by the platform during the period we study is

inefficient as its outcome lies below the possibility frontier in utility-congestion space.

We design alternative algorithms that incorporate a more efficient mix of personalia-

tion and randomization compared to the status quo outcome. They reduce congestion

without decreasing the expected match utility of the rooms users are steered to, or,

conversely, increase utility without reducing congestion.

Inefficiencies arising from congestion, as well as the trade-offs faced by platforms when

steering consumers to their most preferred alternatives, have been documented in a

handful of online platforms: Fradkin (2017) studies search engine design and rejection

rates in Airbnb; Horton (2019), the effects that signaling features have on matching

rates in online labor markets, and Chen, Hsieh, and Lin (2023), matching patterns in an

online dating platform and point out, as we do, that recommendation algorithms used

by tech companies may lead to congestion.

From a theoretical perspective, alleviating the inefficiencies caused by congestion in two-

sided markets has long been seen as one of the goals of effective market design (Roth and

Xing, 1997; Roth, 2008). For example, Arnosti, Johari, and Kanoria (2021) study the

welfare losses due to inefficient equilibrium search and screening in congested markets;

Immorlica, Lucier, Manshadi, and Wei (2021) study the benefits of directing consumer

search by limiting choice, which reduces congestion and the cannibalization of “low type”

sellers’ demand by “high types” ones; Ashlagi, Krishnaswamy, Makhijani, Saban, and

Shiragur (2022) study the trade-offs between expanding choice and increasing matching

when designing recommendation algorithms in two-sided platforms; Mekonnen (2023)

shows that there is more congestion when preferences are common and quality is revealed

with directed search than in random matching. The main theoretical insight of our

3



paper relates to how the effects of congestion are mediated by the differentiation present

in consumer preferences, which is evidence of how optimal market design depends on

market-specific features. In our case, the trade-off between utility and congestion is

driven by the amount of horizontal and vertical differentiation in the market.

A literature parallel to the papers above studies the effects of algorithms on consumer

search in online marketplaces (e.g., Koulayev, 2014; Hodgson and Lewis, 2020). While

the focus of our analysis is not on modeling optimal consumer search paths, our empirical

findings echo the findings in this literature, especially in relation to ranking algorithms.1

The importance of rankings in online search have been widely documented (e.g., Ghose,

Ipeirotis, and Li, 2014; Chen and Yao, 2017; Dang, Ursu, and Chintagunta, 2022).

For example, a common finding in hotel booking platforms is that presenting the best

alternatives at the top reduces the search costs associated with finding the right product

(De los Santos and Koulayev, 2017; Ursu, 2018). However, the platforms studied in these

papers are largely many-to-one markets in which product capacity is large enough for

any number of users to be matched to the same product; in these markets, congestion

is not an issue, leading to design implications which differ greatly from those explored

in this paper.

In the next subsection (Section 1.1), we present descriptive evidence to motivate our

analysis. In Section 2, we present our model, estimation strategy, and a description

of our empirical specification. In Section 3, we discuss the estimation results, and, in

Section 4, we study counterfactual exercises. We conclude in Section 5. In Appendix A,

we report additional analyses and tables which we refer to throughout the text.

1.1 Congestion: motivating evidence

Our platform is one of the largest peer-to-peer rental markets in the world for medium-

term rooms and apartments, active in many of the biggest cities in Europe, the Americas,

and Asia. At the time period we are analyzing it differentiated itself from other com-

peting platforms such as Airbnb by renting rooms for a longer term, at least a month,

targeting exchange students and workers. Our platform operates via a website or mo-

bile app in which users interested in rentals submit searches and are shown available

apartments listed by landlords. We observe the sequence of clicks to view rooms and

submit requests to landlords done by each user. Our platform simply brings together

renters and landlords, without always participating in the booking process; in that sense

our study platform has more in common with Craigslist than Airbnb, and our dataset

contains limited information on what happens after a room is requested by a user. Thus

1As we discuss below, we model consumer clicking and requesting choice conditional on search. While
this implies making the assumption that consumer search is invariant to the ranking algorithm when
conducting counterfactuals, we view this favorably compared to making stronger structural assumptions
in relation to consumer search behavior.
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Figure (a) Share of clicks Figure (b) Share of requests

Figure 1: Concentration of clicks and requests by position

the empirics in this paper focus on users’ click and request behavior, for which we have

complete data.

Our dataset consists of 100% of all the listed rooms and searches for Barcelona, a major

city for business and university studies in Europe. In presenting search results to users,

our platform ranks rooms according to an algorithm that uses several features—including

the date the room was posted, and whether the room is associated with a “registered”

landlord who has linked their bank account on the platform—to determine the rank. A

room’s rank determines the position in which it is shown in the page of search results.

The established criteria only determine a partial order across rooms that is subsequently

randomized to generate a complete order. A key feature of this algorithm is that the

same randomization is used to break ties between rooms across all renters, so that room

rankings are invariant across renters.2 Hence, while renters may be shown different sets

of rooms depending on their search criteria, the rooms will be shown in the same order

to all renters at a given point in time.

Figure 1 shows that clicks (Figure 1a) and room requests (Figure 1b) are concentrated

on rooms shown to users at top positions. Specifically, we see that over 15% of all clicks

and requests in the data are made to rooms shown to users at the first position. This

percentage falls to around 4% for the tenth position, and asymptotes to around 2% for

the 20-th position. This evidence suggests that rankings matter to renters’ behavior.

Indeed, the top two graphs of Figure 2 show that rooms shown in higher positions are

more likely to be clicked on (Figure 2a) and requested (Figure 2b).

However, the bottom graph (Figure 2c) offers an interesting counterpoint. Conditional

on being clicked, rooms in higher positions are not more likely to be requested than

those in lower positions.3 Specifically, conditional on having been clicked on, a top-

2We use user, renter, and tenant, interchangeably.
3This is reminiscent of Ursu (2018), who finds a similar pattern analyzing data of Expedia.
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Figure (a) P(Click)

Figure (b) P(Request)

Figure (c) P(Request |Click=1)

Figure 2: Probability of click and request by position

6



ranked room and the 20-th ranked room are both requested with a probability close to

0.10. This suggests that the rooms’ page ranking is to some extent orthogonal to the

users’ preferences over rooms, as it affects only whether users click on a room (which

arguably depends on users’ attention), but not whether they request a room (which

depends on their preferences over the room’s characteristics). Since rooms have to be

clicked on before they can be requested, this also suggests that the concentration at

the top positions observed in Figure 1 might be driven more by clicking behavior and

attention than preferences.

Figure 3 presents initial evidence relating to the congestion on the platform across

rooms. To illustrate congestion, we use Lorenz curves, which measure the degree of

concentration, or congestion, across rooms in terms of the frequency with which they

appear as search results, and are clicked on or requested. Higher congestion bends the

Lorenz curve towards the plot’s upper-left corner and indicates that the frequency is

nonuniform across rooms; lower congestion moves the Lorenz curve towards the 45-

degree line, indicating that the distribution across rooms is closer to uniform.

The top graph in Figure 3 shows the Lorenz curve for search results, which illustrates

a high degree of congestion: the 20% of rooms that appear most often in users’ search

results (on the x-axis) accumulate around 65% of the total number of search results in

the data (on the y-axis). This congestion only worsens when we consider clicked rooms,

as from the middle graph (Figure 3b) we see that the top 20% of rooms in terms of

clicks account for almost 70% of the total clicks. Finally, the bottom graph (Figure 3c)

shows that the top 20% of rooms in terms of requests make up the entirety (100%) of

all room requests.4

This suggests substantial congestion as the universe of clicks and requests are highly

concentrated on around 20% of the rooms. At the same time, 80% of the rooms never

receive a single request, which raises the possibility of allocative gains from reducing

congestion. Since a room can be rented to at most one user, all else equal, renters are

better off requesting rooms that receive fewer requests from other renters. These are

topics which will guide our subsequent analysis.

Finally, Figure 4 illustrates users’ price sensitivity. We plot CDFs of room prices across

all search results (blue), search results that are clicked on (red), and search results that

are requested (orange). We see that the CDF of prices across all search results stochasti-

cally dominates the other two; users tend to click and request cheaper rooms. The figure

also shows, albeit in a lower magnitude, that the distribution of prices across clicked

rooms stochastically dominates that of rooms that are requested. In other words, as the

consumer search journey progresses, the rooms users browse, click on, and eventually

4The dataset used in the analysis contains a random sample of 10% of the users in the market for
rooms in Barcelona. We specify in detail how we construct the sample in Section 2.3.
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Figure (a) Searches

Figure (b) Clicks

Figure (c) Requests

Figure 3: Concentration of searches, clicks and requests
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Figure 4: Price sensitivity during Customer Search Journey

request, become cheaper. As we would expect, this shows that users are price sensitive,

and may even update their evaluations of rooms after clicking on them and seeing their

listings in more detail.

2 Model

Section 2 introduces the setup and notation which underlies our analysis. Users (or

renters) are indexed by i ∈ N = {1, . . . , n}. Each user is associated to a vector of

observable characteristics Zi. User i conducts searches S ∈ Si, where |Si| = ni is the

number of searches conducted by user i. A search S is a collection of search results

s ∈ S = {1, . . . , nS}, where nS is the number of search results in search S.

Each search result s is associated to a vector of observable characteristics, Xs = (X1s, X2s, poss),

where X1s are the characteristics users observe in the page of search results, such as the

price and the location of a room, X2s the ones they observe only upon clicking on the

search result, such as the amenities of a room, and poss is the position the room is shown

on the page of search results.5 The decision variables observed in the data are:

kis = 1{user i clicks on search result s} (1)

ris = 1{user i requests search result s} (2)

5Specifically, a search S is a collection of pages, each containing several search results. However, for
simplicity we abstract from the page a search result is shown in, and just take into account the position
it is shown in within the corresponding page. This should not have an impact on our counterfactual
analysis if we assume that the changes in the ranking algorithm do not change the number of pages
explored by users.
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We omit the dependence of kis and ris on S ∈ Si for simplicity. Since to request a room

one needs to click on it first, we have ris = 1 ⇒ kis = 1. Finally, we index rooms by

j ∈ J , where js denotes the room associated to search result s.

2.1 Users’ clicks and room requests: A multinomial choice framework

Next we describe the framework we use to model users’ observed click and room requests.

The utility of requesting search result s in a generic search S made by user i ∈ N is

given by:

Uis = X1sβ1 +X2sβ2 + (X2s ⊗ Zi)βXZ + εris, (3)

where εrS = (εris)s∈S is an iid vector of extreme-value type 1 random utility shocks

and X2s ⊗ Zi is a shorthand for interactions between X2s and Zi (which may not be

exhaustive). For example, X2s ⊗ Zi includes whether user i has the gender, age, or

occupation preferred by the landlord of the listing in search result s.

The request data reveals a partial ordering of the utility of rooms conditional on being

clicked, where rooms that are requested have a utility higher than those that are clicked

but not requested. For example, suppose that a user clicks on four rooms (search results)

in a search, 1, 3, 4, and 7, with utilities U1, U3, U4, and U7, respectively. If they request,

say, rooms 1 and 4, the request data reveals min{U1, U4} > max{U3, U7}. Essentially,

in the estimation we allow the users to choose more than one item among their choice

sets, and impose only that users obtain higher utility from the chosen options than

the non-chosen options, while being agnostic about users’ ranking among the chosen

(and non-chosen) options. Given the extreme-value specification of the utility shocks,

our model takes the form of a rank-ordered logit model with ties (Beggs, Cardell, and

Hausman, 1981; Allison and Christakis, 1994).6

The propensity to click on a room depends on the position the room is shown in as

a search result and on its expected utility conditional on the information the user has

before clicking. Formally, the propensity to click on a search result s in a generic search

S of user i ∈ N is determined by:

Iis = g(posis)βpos +E [Uis | X1s, posis]βU + posis ×E [Uis | X1s, posis]βpos×U + εkis, (4)

where εkS = (εkis)s∈S is an iid vector of extreme-value type 1 random shocks, g(·) is a

known function (which we specify as a squared polynomial with point-masses at the

first, second, and third positions), and E [Uis | X1s, posis] is the room’s expected utility

6We have also estimated semiparameteric versions of this model (Fox, 2007; Yan and Yoo, 2017),
and our findings are qualitatively similar.
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conditional on the available information. Namely,

E [Uis | X1s, posis] = X1sβ1 + E [X2s | X1s, posis]β2 + E [X2s ⊗ Zi | X1s, posis]βXZ .

(5)

As with requests, our model for clicks has the structure of a rank-ordered logit with ties.

2.2 Estimation

There are two stages in users’ choice behavior. First, a user clicks a room from her

search results. Second, after learning more about its features, she may decide to request

the room by contacting the landlord. Analogously, there are two sequential stages in our

estimation procedure, corresponding to users’ click and request decisions. Proceeding

backwards, we start by describing the estimation of the model for the request decision,

and then describe how this feeds into our estimation of the earlier click decision.

In the first step, we estimate the parameters in the utility equation (3) via maximum

likelihood: β̂1, β̂2, and β̂XZ . After estimating these parameters, we project the covariates

in X2s onto X1s and posis to estimate the expected requested utility. The estimated

expected request utility is given by:

Ûi(Xs) = X1sβ̂1 + X̂2sβ̂2 + (X̂2s ⊗ Zi)β̂XZ , (6)

where X̂2s are the fitted values of linear projections (in which we include numerous

interactions to provide enough flexibility). Equation (6) is the estimated version of (5).

Next we proceed to estimate the click decision model, where we use the estimated

expected request utility Ûi(Xs) as a covariate and interact it with posis (see equation

(4)). The parameters in the click equation (4) are readily estimated via maximum

likelihood: β̂pos, β̂U , and β̂pos×U .

2.3 Empirical specification and summary statistics

In the empirical specification, we include the following variables:

• X1s = price, number of tenants in room (may be missing in which case we include

a dummy), and location (we split Barcelona into six districts);

• X2s = room amenities (AC, Balcony, Dishwasher, Doorman, Elevator, Exterior

View, Heating, Smoker Friendly, TV, Terrace), number of days the room has been

published in the platform, and dummies indicating whether the user has the age,

gender, and occupation (student or worker) preferred by the landlord.

Our dataset consists of a random sample comprising 10% of all the users who used the

platform in a two-year period (January 2018 to February 2020). For each of these users,
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we observe the complete sequence of searches, clicks, and requests. There exists vast

variation across users and searches in the data, with many users searching all over the

globe and others searching without submitting any requests. In order to include in our

analysis only the relevant choices made by users who are likely to be considering renting

an apartment in Barcelona, we restrict our sample as follows. First, we say that a search

is in Barcelona if at least 75% of its search results are in Barcelona, where a search result

is said to be in Barcelona if the room’s location is at most 30km away from Barcelona’s

city center. We include in the estimation sample the searches in Barcelona made by

users who (i) predominantly search in Barcelona (at least 75% of their searches are in

Barcelona), and (ii) made at least one request to a room in Barcelona during the sample

period.

Table 1 provides the size of our estimation sample and descriptive statistics of the users,

rooms, searches, clicks, and requests in it. The sample contains 1,202 users. On average,

users are 29 years old; 51% of them are females, 35% are students, and 81% are employed.

There are 45,462 rooms, of which 80% specify they prefer renters within a specific age

bracket (on average, they prefer renters that are between 20 and 36 years old). 27%

of rooms also specify a preferred gender for renters, of which 23% prefer female renters

and 4% male renters. Finally, 25% of rooms specify a preferred occupation for renters,

of which 22% prefer not renting to students, and 3% prefer to rent to students only.

In terms of congestion, while all rooms appear at least once as a search result in the

sample, only 64% of them receive at least one click, and 15% receive at least one request

(see Figure 3 for a full picture of the concentration of searches, clicks, and requests in

the sample). On average, each user conducts 144 searches and browses over 1,700 search

results. Searches contain an average of 12 search results, with a maximum of 20. This

adds up to a total of over 2 million search results. On average, each user clicks on 75

rooms and submits requests to 7 rooms.

Table 2 reports summary statistics of room characteristics. The left panel (first five

columns) reports summary statistics across all search results in the sample.7 The right

panel (last three columns) reports mean differences across: (a) search results that are

clicked on and all search results (clicked – all); (b) search results that are requested and

all search results (requested – all), and (c) search results that are requested and clicked

on (requested – clicked). Analyzing these differences in means offers a quick insight into

the presence of variation across the rooms that renters browse, click on, and ultimately

request. Our model is designed to exploit this variation to estimate users’ preferences

for rooms.

7We provide characteristics at the level of search results since this is the unit of observation in the
analysis.
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On average, rooms displayed as search results are around e400 per month. Compared

to all displayed rooms, on average, the ones that are clicked on are e12 cheaper, and

the ones that are requested are e15 cheaper. We also see that renters tend to click

on rooms that have been published for more days in the platform, but do not request

them. Renters tend to browse rooms for which their personal characteristics match the

landlord’s preferences: 81% of search results have the preferred gender of the user (or

none), 65% their preferred age (or none), and 90% their preferred occupation (or none).

Unsurprisingly, renters are more likely to click on and request listings in which their

gender, age, and occupation match the landlord’s preferences. There is rich variation in

the data across room amenities: doorman, dishwasher, terrace, etc. In general, renters

tend to click on and request rooms that have more amenities. Interestingly, users seem

less inclined to click on and request rooms with AC. By contrast, having a balcony or

an exterior view are amenities that renters seem to value more. In terms of location,

the sample is relatively balanced across the six regions of the city we consider.8 Perhaps

unsurprisingly, renters seem to be more likely to click and request rooms near the city

center, in Ciutat Vella, Saint Mart́ı, or L’Eixample.

8The city of Barcelona proper has 10 districts, which we group into five by merging together Sarrià-
Sant Gervasi and Gràcia, Ciutat Vella and Saint Mart́ı, Sants-Montjuic and Les Corts, and Horta-
Guinardó, Nou Barris and Sant Andreu (into North Barcelona). Additionally, we pool together rooms
that are within a 30km radius from the city center but outside the 10 districts, into “Greater Barcelona.”
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Table 1: Sample description

Number of users (renters) 1,202
Average age 29.44
Are females (%) 51.4
Are students (%) 34.61
Are employed (%) 81.03

Number of rooms 45,462
Specify minimum tenant age (%) 80.27

Average minimum tenant age 20.57
Specify maximum tenant age (%) 80.27

Average maximum tenant age 36.06
Specify a preferred tenant gender (%) 27.2

Prefer female tenants (%) 23.13
Prefer male tenants (%) 4.07

Specify a preferred tenant occupation (%) 25.4
Prefer no student tenants (%) 22.7
Prefer not employed tenants (%) 2.68

Appear in at least one search result (%) 100
Are clicked on at least one (%) 63.56
Are requested at least one (%) 14.69

Total number of searches 173,223
Average per user 144.11

Total number of search results 2,066,147
Average per user 1,718.92
Average per room 45.45
Average per search 11.93

Total number of clicks 89,624
Average per user 74.56
Average per room 1.97
Average per room | ≥ 1 3.1
Average per search 0.52
Prob. search result is clicked 4.3%

Total number of requests 8,542
Average per user 7.11
Average per room 0.19
Average per room | ≥ 1 1.28
Average per search 0.049
Prob. click is requested 9.5%
Prob. search result is requested 0.41%

Notes: Table reports sample sizes and descriptive statistics of the
users (renters), rooms, searches, search results, clicks, and requests in
the estimation sample.
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Table 2: Summary statistics and mean differences

mean sd median min max
clicked
− all

requested
− all

requested
− clicked

Price 400.591 102.643 390 0 750 -12.377*** -15.288*** -3.740***
Missing number of tenants 0.132 0.339 0 0 1 -0.009*** -0.005 0.004
Number of tenants 1.898 1.406 2 0 20 0.018*** 0.047*** 0.032**
Days since first published 100.669 166.695 14 0 744 5.648*** -5.017*** -11.495***

User has gender preferred by landlord 0.812 0.391 1 0 1 0.008*** 0.034*** 0.029***
User has age preferred by landlord 0.654 0.476 1 0 1 0.006*** 0.026*** 0.022***
User has occupation preferred by landlord 0.902 0.297 1 0 1 0.006*** 0.013*** 0.008**

Has doorman 0.142 0.349 0 0 1 0.003*** -0.004 -0.008*
Has dishwasher 0.187 0.390 0 0 1 0.003** -0.001 -0.004
Has terrace 0.214 0.410 0 0 1 0.006*** 0.001 -0.005
Has AC 0.241 0.428 0 0 1 -0.004*** -0.017*** -0.014***
Is smoker friendly 0.278 0.448 0 0 1 0.002 0.011** 0.010**
Has elevator 0.653 0.476 1 0 1 -0.001 0.004 0.006
Has exterior view 0.492 0.500 0 0 1 0.014*** 0.022*** 0.009
Has TV 0.614 0.487 1 0 1 0.003* -0.002 -0.005
Has balcony 0.417 0.493 0 0 1 0.015*** 0.040*** 0.027***
Has heating 0.470 0.499 0 0 1 0.004** 0.011** 0.008

In Sarrià Saint-Gervasi or Gràcia 0.130 0.336 0 0 1 0.007*** 0.005 -0.002
In Ciutat Vella or Saint Mart́ı 0.198 0.399 0 0 1 0.003** 0.043*** 0.044***
In L’Eixample 0.263 0.440 0 0 1 0.016*** 0.036*** 0.022***
In North of Barcelona 0.124 0.329 0 0 1 -0.022*** -0.043*** -0.025***
In Sants-Montjuic or Les Corts 0.160 0.366 0 0 1 -0.008*** -0.024*** -0.018***
In Greater Barcelona 0.125 0.330 0 0 1 0.003** -0.017*** -0.022***

Notes: the table reports summary statistics of the variables used in the model. The first five columns report the mean, standard deviation, median,
minimum, and maximum across all search results in the sample. The last three columns report mean differences between (a) clicked and all search results;
(b) requested and all search results; (c) requested and clicked search results. * p < 0.10, ** p < 0.05, *** p < 0.01. Variables Price and Days since first
published are winsorized on the right at the 99th percentile. See Table 1 for sample sizes and additional descriptive statistics.
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3 Estimation Results

In Section 3, we report and discuss the results of our estimation exercise. Table 3 and

Table 4 report the estimated parameters of the request utility and the click propensity,

respectively.

First, we discuss the parameter estimates of the request utility. As Table 3 shows, we

estimate a negative and statistically significant price sensitivity across multiple specifi-

cations. The coefficients are only identified up to scale in our model. To interpret their

magnitudes it is convenient to rescale them by dividing our estimates by the absolute

value of the price coefficient which allows us to interpret their magnitudes as willingness-

to-pay in euros. For example, once normalized, the coefficient in the last specification for

days since first published equals −0.26, which means that being listed for an additional

day in the platform has an effect on the probability that a user submits a request to

a room after having clicked on it equivalent to the room being e0.26 more expensive.

While statistically significant different from zero, the magnitude of this coefficient does

not point to a large economic significance. Table 9 in Section A.2 reports the normal-

ized values of all coefficients. Seen through this light, we observe that the magnitudes of

the coefficients seem reasonable and economically significant, ranging from values close

to zero up to a few hundred euros. For example, having the gender preferred by the

landlord is valued positively at e521, having a doorman is valued negatively at e121,

and having a balcony and heating are valued positively at e113 and e102, respectively.

In terms of statistical significance, few room characteristics appear to have a significant

impact on consumers’ preferences for rooms. Given the large sample size, this may be

driven by limited variation in the rooms that users click on. However, as we shall see

below, for counterfactuals, we focus on the overall predicted utility of rooms, rather

than on specific coefficients.

Next we discuss our parameter estimates of the click propensity. As Table 4 shows,

we estimate a positive and statistically significant effect of the expected utility of a

room, conditional on the available information, on the propensity to click on a room.

This shows that users are more likely to click on rooms they are more likely to request.

However, the estimated effect of the position a room is shown as a search result on the

propensity that a user clicks on it is negative and statistically significant. Moreover,

since the difference in click propensity from being shown at a higher position is higher

for rooms with a higher utility, this effect is amplified for more preferred rooms.9 Finally,

being shown at the first position has an additional positive and statistically significant

effect on the click propensity. As with our estimates for the request utility, in order

to assess the magnitudes of these coefficients, we can normalize them for them to be

9Please bare in mind that “being shown at a higher position” is equivalent to a lower value for the
variable Position: the top position has Position = 1, etc.
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Table 3: Parameter estimates of request utility

(1) (2) (3) (4)
Price -0.0007** -0.0007** -0.0008*** -0.0009***

(0.0003) (0.0003) (0.0003) (0.0003)
Missing number of tenants -0.0899 -0.0786 -0.0795

(0.0803) (0.0808) (0.0810)
Number of tenants 0.0004 0.0009 -0.0037

(0.0160) (0.0162) (0.0162)
Days since first published -0.0003** -0.0003** -0.0002**

(0.0001) (0.0001) (0.0001)
User has gender preferred by landlord 0.4865*** 0.4906*** 0.4818***

(0.0571) (0.0572) (0.0574)
User has age preferred by landlord -0.0068 0.0027 0.0095

(0.0536) (0.0538) (0.0539)
User has occupation preferred by landlord 0.0771 0.0769 0.0799

(0.0851) (0.0853) (0.0855)
Has doorman -0.0924* -0.1119**

(0.0551) (0.0554)
Has dishwasher 0.0728 0.0729

(0.0492) (0.0493)
Has terrace -0.0191 -0.0136

(0.0449) (0.0450)
Has AC 0.0082 0.0149

(0.0471) (0.0473)
Is smoker friendly 0.0017 -0.0019

(0.0403) (0.0404)
Has elevator 0.0529 0.0416

(0.0413) (0.0419)
Has exterior view -0.0260 -0.0161

(0.0399) (0.0401)
Has TV -0.0115 -0.0125

(0.0374) (0.0374)
Has balcony 0.1149*** 0.1049***

(0.0381) (0.0382)
Has heating 0.0892** 0.0945**

(0.0395) (0.0397)
In Sarrià Saint-Gervasi or Gràcia -0.0710

(0.1956)
In Ciutat Vella or Saint Mart́ı -0.1014

(0.1916)
In L’Eixample -0.0574

(0.1905)
In North of Barcelona -0.5561***

(0.1947)
In Sants-Montjuic or Les Corts -0.1696

(0.1869)
Num Searches 52,737 52,737 52,737 52,737
Num Results 89,624 89,624 89,624 89,624
Pseudo-R2 0.0005 0.0087 0.0111 0.0150
Log-likelihood -5112.57 -5070.45 -5058.32 -5038.15

Notes: Table reports rank-ordered logit parameter estimates. Estimation via maximum likelihood. Standard
errors in parentheses; *p < 0.10, **p < 0.05, ***p < 0.01. The category “In Greater Barcelona” is omitted.
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Table 4: Parameter estimates of click propensity

(1) (2) (3) (4)
Position -0.0538*** -0.0834*** -0.0698*** -0.0698***

(0.0008) (0.0026) (0.0049) (0.0049)
Position2 0.0016*** 0.0010*** 0.0010***

(0.0001) (0.0002) (0.0002)
1(Position = 1) 0.0991*** 0.0987***

(0.0212) (0.0212)
1(Position = 2) -0.0014 -0.0010

(0.0182) (0.0182)
1(Position = 3) -0.0028 -0.0027

(0.0158) (0.0158)
E[u|I] 0.3027***

(0.0448)
E[u|I] × Position 0.0320***

(0.0044)
Num Searches 173,223 173,223 173,223 173,223
Num Results 2,066,147 2,066,147 2,066,147 2,066,147
Pseudo-R2 0.0143 0.0147 0.0149 0.0161
Log-likelihood -1.644e+05 -1.644e+05 -1.643e+05 -1.641e+05

Notes: Table reports rank-ordered logit parameter estimates. Estimation via max-
imum likelihood. Standard errors in parentheses (do not account for variation in
first-stage parameters); *p < 0.10, **p < 0.05, ***p < 0.01.

measured in euros. Table 10 in Section A.2 reports the normalized values of the coeffi-

cients in Table 4.10 Accordingly, the negative effect that being shown in a lower position

has on the click propensity can be valued at around e200–250 per position. And being

shown at the top position has an additional positive effect equivalent to e352.

Finally, as we mentioned above, in the counterfactuals below, we will use the estimated

utility and click propensity indices. Figure 5 plots these two indices against the position

in which rooms are shown.11 The top graph (Figure 5a) shows that the propensity

to click on a room decreases monotonically with the position a room is shown. And

this holds true in all rooms in the data, regardless of whether they are clicked on or

requested. The bottom graph (Figure 5b) shows that the predicted request utility of

rooms is relatively flat and does not depend heavily on the position they are shown.

This can be seen especially in the predicted utility of the rooms that are requested in

the data (green bars in Figure 5b). Altogether this shows that our estimates of the click

propensity and request utility echo the raw data (cf. Figure 2): while users are more

likely to click at the top, once they have clicked on a room, the position a room is shown

in has no effect on whether the user requests that room.

10Normalizing the coefficients of the click propensity is done by dividing them by the absolute value
of the utility coefficient multiplied by the absolute value of the price coefficient in the request utility.
See that this is necessary in order to obtain the marginal effect of a change in the expected utility when
it is measured in euros.

11In the plots, we normalize the location of the indices, so that the room at the 25th percentile has
a zero index, both for the click propensity and the request utility.
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Figure (a) Click index

Figure (b) Request Utility

Figure 5: Estimated click index and request utility
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4 Counterfactuals

Based on the estimation results above, we simulate a series of counterfactuals in which

we consider the effect of changing the search ranking algorithm on the click and request

outcomes. The counterfactual exercises below consider the following question: What

would the users have clicked on and requested had they observed the same set of search

results but ranked in a different order? Throughout we assume that changing the ranking

algorithm would not affect the users’ unmodeled search behavior: the number of searches

they conduct, clicks they make, and requests they submit.

Before presenting the results, we note that in these simulations we do not incorporate

the utility shocks when predicting outcomes; we only make use of the estimated indices

to predict clicks and requests. This approach is more robust because it does not rely

on the parametric assumptions on the utility shocks, but solely on the heterogeneity

present in the room and user characteristics. In this sense, our approach is conservative

at capturing horizontal differentiation in preferences.12

4.1 Different ranking algorithms: effects of congestion

In the counterfactuals we explore alternative ranking algorithms and compare their

performance to the platform’s current ranking system, which surfaces the same ordering

of search results to every user. To compare congestion across counterfactual scenarios,

we again use Lorenz curves, as in Figure 3 above. Figure 6 presents Lorenz curves across

a number of scenarios, which we discuss in sequence. The top two graphs in Figure 6

show the Lorenz curves corresponding to the data and predicted values derived from

simulations of the model at the estimated model parameters. The close relation between

the data (red curve) and predicted values (blue curve) confirm that the estimated model

fits the data well, both in terms of the clicks (Figure 6a) and requests (Figure 6b).

In the bottom two graphs of Figure 6, we consider two counterfactual scenarios that

incorporate our parameter estimates of user preferences, but only change the order in

which search results are shown to users, while keeping the selection of results within

each search fixed.

First, we consider the case of full personalization in which the search results within

each search are ordered according to each user’s preferences. Since users tend to click on

rooms shown at top positions, this algorithm steers users towards the rooms they prefer

the most. The Lorenz curve from this full personalization scenario is graphed in green.

Second, we consider the case of random order in which the order in which rooms are

shown is fully randomized within every search. This algorithm destroys the correlation

12In Section A.1, we investigate a more flexible specification that allows to capture additional het-
erogeneity present in the search data.
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Figure (a) Predicted clicks Figure (b) Predicted requests

Figure (c) Counterfactual clicks Figure (d) Counterfactual requests

Figure 6: Lorenz curves of the distribution across rooms of clicks and requests

between the position at which rooms are shown across searches and users, and is aimed

at reducing congestion. This scenario is shown in the orange-colored Lorenz curves.

The bottom two graphs show that these counterfactual ranking algorithms do change the

concentration of clicks (Figure 6c) and requests (Figure 6d). The direction of the change

in clicks and requests is qualitatively similar: randomizing the order in which rooms are

shown (orange line) decreases congestion, if only slightly, while the fully personalized

one (green) increases congestion substantially. That is, using the information on user

preferences to rank search results within searches leads to higher congestion compared

to the data.

This suggests that across users, the rooms are primarily vertically differentiated, so that

most users’ preferences agree on which rooms offer the highest utility. This echoes the

findings of Chen et al. (2023), who likewise found that surfacing dating prospects to users

in order of their reported preferences results in excess congestion. From a congestion
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perspective, then, the homogeneous ranking algorithm currently used by the platform

emerges as a preferable option to a fully personalized one.

4.2 Utility and congestion trade-off

The results above illustrate how congestion in this marketplace can be reduced by ran-

domizing search results. However, random search results imposes a potential cost of

lowering the utility that users receive from the rooms that they click on and request.

At the same time, personalizing search results to users by showing them rooms in the

order of their preferences can optimize utility, but result in greater congestion.

This suggests a key trade-off in this market, between congestion and utility. To examine

this trade-off more formally, we introduce a continuum of ranking algorithms indexed by

the parameter α ∈ [0, 1], where α denotes the weight given to the “fully personalized”

order, which ranks more preferred rooms at the top, and 1− α the weight given to the

“random order,” which ranks them randomly. In Figure 6 above, we only considered

the polar cases of α = 1 (“full personalization”), and α = 0 (“random order”); here we

expand to consider all intermediate alternatives.

The effects of incorporating information on user preferences to a random ranking algo-

rithm, i.e., personalizing it, is illustrated in Figure 7. In the left two graphs, the x-axis

plots α moving from 0 to 1. The blue curve shows how the average utility of the rooms

requested by users increases with greater personalization, as α goes from 0 to 1. The red

curve shows how congestion also increases with greater personalization. This pattern is

present both in the distribution of clicks (Figure 7a) and requests (Figure 7c).

The utility and congestion levels in the data are indicated by black dots in the plots.

In the left two graphs of Figure 7, one can see that the average utility in the data can

be achieved by incorporating little information about user preferences to an otherwise

random ranking algorithm, i.e., by setting a value for α lower than 0.1. Furthermore,

the graphs also show that setting such value of α would result in lower congestion than

what is observed in the data since the congestion observed in the data corresponds to

higher values of α, around 0.34 for clicks and 0.25 for requests.

The above leads to two conclusions: (i) the slopes of the curves describing the change

in average utility and congestion encode the trade-off between utility and congestion in

this market, and (ii) the utility and congestion levels observed in the data seem to be

inefficient, in that we can improve one without worsening the other. These conclusions

can be appreciated in the right two graphs of Figure 7, which plot possibility frontiers in

the (utility, congestion) space achievable by different values of α. The black dot in these

plots indicates the (utility, congestion) point observed in the data. Notably, the black dot

lies below the frontier of both clicks (Figure 7b) and requests (Figure 7d), illustrating how

the current ranking algorithm utilized by the platform is inefficient: holding congestion
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Figure (a) α-plot clicks Figure (b) Efficiency frontier for clicks

Figure (c) α-plot requests Figure (d) Efficiency frontier for requests

Figure 7: Utility and congestion trade-off of clicks and requests

fixed, it is possible to improve utility by incorporating more personalization; holding

utility fixed, it is possible to lower congestion by introducing more randomization.

4.3 Looking beyond the data: a hypothetical “garbling” scenario

The trade-off between utility and congestion depends on the degree of differentiation

in consumer preferences. To emphasize this, in Figure 8, we illustrate a tantalizing

hypothetical scenario in which users’ preferences are extremely horizontally differenti-

ated. We achieve this by randomly relabeling the room IDs across searches. While

this “garbling” keeps the utility of the alternatives in each search unchanged, including

the utility of requested rooms, it destroys the correlation of preferences across users.

In such a case, we see that congestion no longer increases in α, which eliminates the

trade-off between utility and congestion (see the dotted red line in the left two graphs of

Figure 8). And the corresponding efficiency frontier approximates a vertical line (dotted

blue line in right two graphs of Figure 8), indicating that at a fixed level of congestion

one can improve utility arbitrarily by personalizing search results to users.
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Figure (a) α-plot clicks Figure (b) Efficiency frontier for clicks

Figure (c) α-plot requests Figure (d) Efficiency frontier for requests

Figure 8: Utility and congestion trade-off of clicks and requests
with extreme horizontal differentiation

Intuitively, when users’ preferences are extremely horizontally differentiated, a “free

lunch” emerges: high degrees of personalization, which lead to high user utility, do

not increase congestion because user preferences are highly dissimilar. The nature of

user preferences plays a central role in the direction of congestion. This exercise points

out the potential benefits that firms may gain if they are able to “horizontalize” user

preferences, perhaps by emphasizing features of products along which user preferences

are more likely to disagree. We will study these issues in future work.

5 Conclusions

Two-sided platforms have the opportunity to reduce search costs of match seekers. How-

ever, unnecessary congestion may be generated if users are steered towards the same

alternatives, for example, by showing alternatives in the same order to users. This may

be a concern especially if the platform has limited information on user preferences. Us-

ing detailed data from a room-rental platform we estimate preferences over rooms and
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demonstrate that, for this market, there is a key trade-off between congestion and utility,

in that ranking algorithms which reduce congestion must also reduce personalization by

steering users to lower-utility rooms.

This arises from the fact that estimated preferences are primarily vertically differenti-

ated, so that customers tend to agree on the most desirable features in the available

rooms. Indeed, in hypothetical simulations, we show that if preferences exhibited suf-

ficient horizontal differentiation, then the trade-off would reverse, leading to a ”free

lunch” whereby personalized algorithms which present customers their most desired

rooms would not reduce congestion.

Clearly, platforms cannot change customers’ preferences. However, they do have a role

to play in designing their websites to emphasize different room features at different

stages of the customer search journey. Can platforms effectively “horizontalize” their

users’ preferences by emphasizing the horizontal rather than vertical features of available

rooms? These and related questions will be explored in future work.
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A Appendix

A.1 Search filters and user heterogeneity13

In this section, we consider a more flexible version of our model that incorporates un-

observed heterogeneity present in the search data. As explained above, the goal of

this portion of the analysis is to show how the utility congestion trade-off we estimate

becomes steeper with a more flexible model that captures more heterogeneity.

The intuition behind our approach is that users who have different preferences might

search differently, for example, by specifying different search criteria when using search

filters. In our platform, a number of search filters are available for price range, location

(neighborhood) of the room, amenities, gender-preferences, etc. While we have no direct

information on the filters users employ when searching, we can assume that a user

has filtered for a specific characteristic if all the results within a search share that

characteristic. Then, if we observe a user that filters searches frequently by a given

characteristic (e.g., students search for rooms near the university, females search for

women-only rooms, couples look for rooms without other tenants, etc.), this may indicate

that their preferences are different to those of users who tend not to filter according to

the same characteristics (e.g., professionals search for rooms near the city center, men

do not search for women-only rooms, singles search for rooms with roommates, etc.).

Our approach captures the heterogeneity present in search data by clustering users

according to the frequency with which they filter by each characteristic. Subsequently,

we estimate request and click choice models, same as we did above, for each cluster

separately, and in this way allow the estimated parameters to vary across clusters.

In order to partition our sample of users in clusters, we use the k-medoids clustering

method over the percentage of searches a user makes that are filtered by the different

room characteristics. For example, if students filter more often for rooms near the

university, our method would assign them to a different cluster as users who do not filter

for rooms close the university. We use the percentage of filtered searches to accommodate

the wide variation in the search behavior of users.

The k-medoids clustering method is similar to the k-means clustering method to dis-

cretize unobserved heterogeneity (Bonhomme, Lamadon, and Manresa, 2022). Both

methods split the observations in a dataset into k clusters by minimizing the distance

between the data points to the center of their cluster. In k-means, the center of a clus-

ter is the average between the points in a cluster and is referred to as a centroid. In

k-medoids the center of a cluster is an actual point within the cluster, and is referred

to as a medoid. The difference between both methods is akin to that of using means or

medians to describe data. k-medoids is a more robust method for outliers, and partic-

13Some of the results in this section are preliminary and still need to be updated.
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Table 5: Medoids of each cluster (k-medoids)

Cluster 1 Cluster 2 Cluster 3

User has gender preferred by landlord 12.98 20.83 68.54
User has age preferred by landlord 4.21 4.17 15.05
User has occupation preferred by landlord 79.30 4.17 76.33
Has doorman 0.35 0.00 0.27
Has dishwasher 0.35 4.17 0.55
Has terrace 0.00 0.00 0.55
Has AC 0.35 4.17 0.55
Is smoker friendly 2.46 4.17 1.09
Has elevator 0.70 4.17 8.21
Has exterior view 3.51 8.33 3.15
Has TV 4.91 4.17 3.69
Has balcony 0.00 4.17 2.74
Has heating 3.16 4.17 2.05
In Saint-Gervasi or Gracia 0.00 0.00 2.74
In Ciutat Vella or Saint Marti 3.86 0.00 7.66
In Eixample 1.05 0.00 13.27
In North of Barcelona 2.81 0.00 0.14
In Sants-Montjuic of Les Corts 1.05 0.00 6.43

Notes: Clusters are constructed over the percent of searches a user makes filtering by each
covariate. A search is said to be filtered if all search results have the covariate = 1.

ularly useful for categorical data or cases in which the centroids of the clusters are not

data points. In particular, the medoids of the clusters found by k-medoids are simpler to

interpret than the centroids found by k-means.14 We use k-medoids because many users

never use filters for some characteristics. Even though the dataset we use to determine

clusters is not composed of categorical data, it has many zeros.

As discussed above, before estimation we pre-process the data to cluster the users in our

sample to allow for user-specific preference heterogeneity. In the preferred specification,

we split the users into three clusters using k-medoids.15 Table 5 reports the medoids of

the clusters, and Table 6 their size and summary statistics of the users in each cluster.

Importantly, the characteristics in Table 6 are not used to compute the clusters, just

the frequencies with which users filter searches by any of the characteristics reported in

Table 5.

The three clusters have reasonable interpretations. As shown in Table 6, users in Cluster

3, which is the largest, are primarily workers (> 99%) and men (> 80%). Women

14For a thorough discussion on the difference between both methods and how to implement them,
see Kaufman and Rousseeuw (1990).

15As with k-means, the number of clusters in k-medoids needs to be manually prespecified. We tried
with alternative number of clusters and found three to be the most sensible; in particular, using more
clusters resulted in clusters with very few users.
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Table 6: Average user characteristics within each cluster

Cluster 1 Cluster 2 Cluster 3

Percent of users (%) 23.33 35.40 41.27
Age 27.53 29.19 30.64
Is female 0.50 0.93 0.17
Is student 0.59 0.31 0.24
Is worker 0.31 0.93 0.99
Number of searches per user 137.17 174.79 143.61
Number of clicks per user 141.46 169.94 137.77
Number of requests per user 12.58 13.83 13.77

Notes: Clusters are constructed over the percent of searches a user makes filtering
by each covariate. A search is said to be filtered if all its results have the covariate
= 1. User characteristics are not used to construct the clusters.

workers make up most of Cluster 2, while Cluster 1 contains many students (∼ 60%)

and is roughly split evenly between men and women.

Table 7 reports the estimated parameters of the request utility, and Table 8 those of

the click propensity. We allow the parameter vector to vary across clusters in both

cases. As we do in the analysis in the main text, we use the parameter estimates to

compute utility and click-propensity indices for every user. This allows us to predict

clicks and requests, in particular, when the order in which rooms are shown is changed.

We conduct the same analysis we do in the text varying α ∈ [0, 1], the weight given to

the fully personalized ranking in which every user is shown rooms ranked according to

their estimated preferences, relative to random order.

Figure 9 replicates the same graphs in Figure 7 and Figure 6 in the main text for the

case in which preferences are allowed to vary by clusters. Altogether, the qualitative

results we find in the main text remain: (i) both the average utility of requested rooms

and congestion (in clicks and requests) increase as we incorporate information of user

preferences to a random ranking (i.e., as α moves from 0 to 1); (ii) the levels of utility and

congestion obtained from the platform’s algorithm are inefficient, in that we can increase

utility (or reduce congestion) without increasing congestion (or reducing utility); (iii) if

we “garble” the IDs of rooms in the data to destroy the correlation of preferences across

users, the trade-off vanishes: increasing personalzation leads to a higher utility without

increasing congestion.

The key insight from Figure 9 is that the possibility frontier between congestion and

utility becomes “more concave” as we allow preferences to vary across clusters. This

is due to the fact that the model with clusters allows for more highly horizontally

differentiated preferences since users in different clusters have different preferences for the

same room (even if they happen to have the same individual characteristics). Therefore,

introducing personalization to an otherwise random ranking (when α is close to zero)
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increases utility “quicker” (there is better targeting since the model approximates better

the horizontal component of preferences) without increasing congestion “too much”

(even if we personalize, users in different clusters still have different preferences for

the same rooms). Altogether, this shows how the degree of horizontal and vertical

differentiation in preferences mediates the trade-off between utility and congestion.

Figure (a) α-plot clicks Figure (b) Frontier clicks

Figure (c) α-plot requests Figure (d) Frontier requests

Figure 9: Utility and congestion trade-off of clicks and requests with clusters
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Table 7: Parameter estimates of request utility by clusters

Cluster 1 Cluster 2 Cluster 3
Price -0.0012 -0.0010** -0.0008

(0.0007) (0.0005) (0.0005)
Missing number of tenants -0.0161 -0.1766 -0.0186

(0.1778) (0.1328) (0.1269)
Number of tenants 0.0131 -0.0044 -0.0091

(0.0347) (0.0250) (0.0276)
Days since first published -0.0005* -0.0003* -0.0001

(0.0003) (0.0002) (0.0002)
User has gender preferred by landlord 0.4040*** 0.4131** 0.5149***

(0.1248) (0.1698) (0.0710)
User has age preferred by landlord -0.0060 -0.0377 0.0522

(0.1172) (0.0907) (0.0826)
User has occupation preferred by landlord 0.0676 -0.0450 0.2497

(0.1106) (0.1955) (0.2071)
Has doorman -0.1683 -0.1185 -0.0664

(0.1209) (0.0906) (0.0873)
Has dishwasher 0.0217 0.0458 0.1263*

(0.1124) (0.0794) (0.0767)
Has terrace 0.1532 -0.0495 -0.0481

(0.1044) (0.0712) (0.0705)
Has AC 0.0871 -0.0056 -0.0057

(0.1064) (0.0751) (0.0753)
Is smoker friendly 0.0115 -0.0620 0.0342

(0.0915) (0.0661) (0.0622)
Has elevator 0.2132** -0.0245 0.0170

(0.0921) (0.0679) (0.0660)
Has exterior view -0.1442 0.0349 -0.0028

(0.0878) (0.0657) (0.0628)
Has TV -0.1502* -0.0484 0.0915

(0.0839) (0.0607) (0.0586)
Has balcony 0.0605 0.0150 0.2056***

(0.0843) (0.0626) (0.0596)
Has heating 0.1849** 0.0793 0.0666

(0.0912) (0.0640) (0.0619)
In Saint-Gervasi or Gracia -0.2117 -0.0729 -0.0296

(0.3994) (0.3069) (0.3370)
In Ciutat Vella or Saint Marti 0.1377 -0.0257 -0.3318

(0.3882) (0.2978) (0.3343)
In Eixample -0.0425 0.0056 -0.1619

(0.3835) (0.2971) (0.3320)
In North of Barcelona -0.6274 -0.4368 -0.6578**

(0.4110) (0.3009) (0.3349)
In Sants-Montjuic of Les Corts -0.0807 -0.0631 -0.3314

(0.3771) (0.2937) (0.3231)
Num Searches 10,988 20,979 20,770
Num Results 18,481 35,839 35,304
Pseudo-R2 0.0271 0.0079 0.0260
Log-likelihood -990.4105 -1963.7888 -2062.3082

Notes: Standard errors in parentheses (do not account for clustering stage); *p < 0.10,
**p < 0.05, ***p < 0.01. The category “In Greater Barcelona” is omitted.
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Table 8: Parameter estimates of click propensity by clusters

Cluster 1 Cluster 2 Cluster 3
Position -0.0522*** -0.0394*** -0.1009***

(0.0107) (0.0081) (0.0081)
Position2 0.0004 0.0008** 0.0017***

(0.0005) (0.0003) (0.0004)
1(Position = 1) 0.1072** 0.1421*** 0.0487

(0.0466) (0.0335) (0.0338)
1(Position = 2) 0.0522 0.0009 -0.0326

(0.0399) (0.0289) (0.0288)
1(Position = 3) 0.0237 -0.0027 -0.0168

(0.0348) (0.0252) (0.0250)
E[u|I, cl] 0.4379*** 0.1230 0.2219***

(0.0684) (0.0756) (0.0621)
E[u|I, cl] × Position 0.0069 0.0531*** 0.0262***

(0.0066) (0.0078) (0.0059)
Num Searches 36,440 69,159 67,624
Num Results 443,428 810,435 812,284
Pseudo-R2 0.0156 0.0116 0.0220
Log-likelihood -3.498e+04 -6.487e+04 -6.422e+04

Notes: Standard errors in parentheses (do not account for clustering or re-
quest stage); *p < 0.10, **p < 0.05, ***p < 0.01.
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A.2 Additional tables

Table 9 and Table 10 report the normalized coefficients of the request utility and click

propensity in the main text. More specifically, the parameters in Table 9 correspond

to the parameters in Table 3, and the parameters in Table 10 correspond to those in

Table 4.

Table 9: Normalized parameter estimates of request utility

(1) (2) (3) (4)
Price -1.00 -1.00 -1.00 -1.00
Missing number of tenants -130.93 -96.72 -85.94
Number of tenants 0.53 1.13 -4.02
Days since first published -0.40 -0.32 -0.26
User has gender preferred by landlord 708.38 603.54 520.57
User has age preferred by landlord -9.85 3.38 10.28
User has occupation preferred by landlord 112.34 94.65 86.36
Has doorman -113.70 -120.95
Has dishwasher 89.54 78.72
Has terrace -23.48 -14.73
Has AC 10.03 16.12
Is smoker friendly 2.10 -2.08
Has elevator 65.10 44.97
Has exterior view -31.93 -17.42
Has TV -14.12 -13.54
Has balcony 141.31 113.34
Has heating 109.70 102.14
In Saint-Gervasi or Gracia -76.72
In Ciutat Vella or Saint Marti -109.53
In Eixample -61.97
In North of Barcelona -600.84
In Sants-Montjuic of Les Corts -183.20

Notes: Coefficients normalized to be in euros (divided by absolute value of price coefficient).
The category “In Greater Barcelona” is omitted.

Table 10: Normalized parameter estimates of click propensity

(1)
Position -249.14
Position2 3.74
1(Position = 1) 352.42
1(Position = 2) -3.70
1(Position = 3) -9.68
E[u|I] 1.00
E[u|I] × Position 114.38

Notes: Coefficients normalized to be in
euros (divided by absolute value of the
normalized utility coefficient).
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