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Overview

‚ Matching and Market Design

‚ Syllabus

‚ Assessment

‚ Presentation topics
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Standard Microeconomics

‚ Commodity markets

– Unique (or few) homogeneous good(s)

– Goods are infinitely divisible

– Many buyers (usually homogeneous)

‚ Assignment mechanism: price system

– Market price determines “who gets what”

‚ Focus on:

– What determines demand and supply?

– Comparative statics

– Market structure, etc.
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Matching

‚ High levels of heterogeneity

‚ Heterogeneous preferences over non-homogeneous goods

– Preferences may be over goods or over who is selling the good

‚ One-sided: only buyers have preferences

‚ Two-sided: sellers also have preferences for buyers

‚ Focus on non-price mechanisms

– Prices may not be used in these markets because of legal constraints (e.g., illegal to buy and sell

human organs, or to pay for publicly provided services, such as public schooling)

– In small markets, it may be hard to impose “equilibrium conditions” to find prices
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Market design

‚ Market design focuses broadly on the application of a wide arrange of tools to study specific

markets with the above characteristics

‚ Most famous examples:

– School choice

– Kidney exchange

– Medical residency programs

‚ This course focuses on the theoretical aspects of market design (i.e., matching models)

– Auctions are also considered a part of market design, but we will not cover auctions in this course.

‚ Active research areas also use other tools: structural econometrics, experiments, causal inference,

computer science, policy design and evaluation, etc.
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Syllabus

‚ Week 1: House allocation

‚ Week 2: Housing market

‚ Week 3: Kidney exchange

‚ Week 4: Random allocations

‚ Week 5: Marriage market

‚ Week 6: The medical match

‚ Week 7: School choice

‚ Week 8: Course allocation

‚ Week 9: Student presentations 1

‚ Week 10: Student presentations 2

‚ Week 11: Final take-home exam
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Assessment

‚ Evaluation

– 55%: final take-home exam

– 25%: presentation(s)

– 20%: two problem-sets

‚ The material for the module consists of prerecorded lectures and lecture notes.

– The videos and notes for week t will be distributed on Monday of week t ´ 1.

‚ Students are responsible to cover the material on their own before class

‚ Live sessions will be held online through Zoom (time TBD)

– They will be dedicated to Q&A, discussion, and solving problems
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Presentation topics

‚ Ideally, each student will give two presentations

‚ But this will depend on the number of students and the speed with which we cover the material

‚ The topic of the presentation(s) will be chosen by students upon consultation with the instructor

‚ Some recommended topics for presentations:

– Fair division

– Voting rules and social choice

– Dynamic matching

– Empirical matching models

– Matching with network externalities

– Global kidney exchange

– Antitrust lawsuit against the medical match (NRMP)
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Overview

‚ Binary relations

‚ Preference relations

‚ House allocation problems

‚ Review of mechanism design

‚ Serial Dictatorship
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Binary relations

‚ Binary relation R over set X is a subset of X ˆ X

‚ px , x 1q P R ñ write xRx 1

‚ px , x 1q R R ñ write not xRx 1

‚ Example: “less than or equal” ď on R

‚ Binary relation R on X is:

1. complete if for every x , x 1 P X , xRx 1, x 1Rx , or both

2. transitive if for every x , x 1, x2 P X , xRx 1 and x 1Rx2 imply xRx2

3. antisymmetric if for every x , x 1 P X , xRx 1 and x 1Rx imply x “ x 1

‚ Example: ď on R is complete, transitive and antisymmetric. ă on R is only transitive, not

complete or antisymmetric.
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Preferences

‚ I = finite set of n agents

‚ H = finite set of houses

‚ A preference relation ě is a complete and transitive binary relation over H

‚ ěi = preference relation of i P I over H

– h ěi h
1 means i prefers house h at least as much as h1

– h ąi h
1 ô h ěi h

1 and not h1 ěi h

– h „i h
1 ô h ěi h

1 and h1 ěi h
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Preferences

‚ “Complete” preferences: every agent thinks one of the following for every pair of houses h and h1

1. I like house h more than house h1 ðñ h ą h1

2. I like house h less than house h1 ðñ h1 ą h

3. I am indifferent between houses h and h1 ðñ h „ h1

‚ “Transitive” preferences rule out inconsistencies:

– Liking h1 more than h2, h2 more than h3, and h3 more than h1!

‚ ěi antisymmetric ñ strict preference relation (aka. linear order)

‚ PpHq = set of linear orders over H

‚ pěi qiPI = preference profile, also written shortly as pěi q
‚ PpHqn = set of all strict preference profiles, i.e., pěi q P PpHqn
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House allocation problems

‚ pI ,H, pěi qiPI q = house allocation problem

‚ Assume ěi P PpHq for every i P I
‚ A matching is a function µ : I Y H Ñ I Y H Y tHu such that:

1. µpiq P H Y tHu
2. µphq P I Y tHu
3. µpiq “ h if and only if µphq “ i

‚ MpI ,Hq = set of all matchings

‚ A matching µ is Pareto efficient if there is no other matching ν PMpI ,Hq such that νpiq ěi µpiq
for all i P I and νpjq ą µpjq for at least one j P I .
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House allocation problems

Example

Let I “ t1, 2, 3, 4u and H “ ta, b, c , du. The preferences are given by:

ą1: b, c , d , a; ą2: a, b, c , d ; ą3: a, c , d , b; ą4: a, d , b, c .

That is to say, agent 1 prefers house b over all the houses, followed by house c, house d, etc.

Consider the matching µ given by:

µp1q “ d , µp2q “ a, µp3q “ c , µp4q “ b.

Is matching µ Pareto efficient?
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Review of mechanism design

‚ Given the Revelation Principle, we restrict attention to direct mechanisms

‚ A matching mechanism is a function φ : PpHqn ÑMpH, I q mapping preference profiles into

matchings

‚ It is Pareto efficient if the matching φrpěi qs is Pareto efficient for every profile pěi q P PpHqn

‚ It is strategy proof if, for every pěi q P PpHqn and every agent i P I ,

φrpěi ,ě´i qspiq ěi φrpě1,ě´i qspiq

for every ě1P PpHq
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Serial Dictatorship

‚ π : t1, . . . , nu Ñ I = priority order

‚ Serial Dictatorship algorithm

– Given ěπp1q, assign πp1q to their top choice in H

– Given ěπp2q, assign πp2q to their top choice among the remaining houses: H minus µpπp1qq
. . .

– Given ěπpkq, assign πpkq to their top choice among the remaining houses . . .

‚ Advantages: it is Pareto efficient and strategy proof

‚ Disadvantages: it is fair inasmuch as π is, usually randomly determined, but not clear how it affects

the properties of the mechanism
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Serial Dictatorship

Example

Let I “ t1, 2, 3, 4u and H “ ta, b, c , du. The preferences are given by:

ą1: b, c , d , a; ą2: a, b, c , d ; ą3: a, c , d , b; ą4: a, d , b, c .

Recall: µp1q “ d, µp2q “ a, µp3q “ c, µp4q “ b, not PE since 1 and 4 swap. Is resulting matching PE?

Yes, since it is the outcome of SD with π “ 1, 2, 3, 4:

1. Agent 1 Ñ b.

2. Agent 2 Ñ a.

3. Agent 3 Ñ c (since a no longer available).

4. Agent 4 Ñ d (since a no longer available).
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Serial Dictatorship

‚ Theorem: The Serial Dictatorship mechanism is Pareto efficient.

‚ Proof:

– Suppose not: D ν PMpI ,Hq s.th. νpiq ěi µpiq for all i P I and νpjq ąj µpjq for some j P I

– Wlog, assume πpkq “ k to simplify notation

– Since k “ 1 gets their top choice in µ, νp1q “ πp1q
– For k “ 2, note that νp2q must also be equal to µp2q, o/w it’d need to be µp1q, which cannot be

since µp1q “ νp1q
– By induction, νpkq “ µpkq for every k ě 2, hence, contradiction!
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Serial Dictatorship

‚ Theorem: For every Pareto efficient matching µ, there exists a priority order π such that µ is the

outcome of SD under π.

‚ Note: SD characterizes the set of Pareto efficient matchings

‚ Proof:

– First, show that at least one agent must be getting their top choice under µ

– Suppose not, then have everyone point to their top choice. And every house point to their owner

under µ. There must by a cycle (no one points to their own house, but every chain comes to an end

since there are finite houses and agents)

– Have agents in a cycle exchange houses. New matching will Pareto dominate µ, which cannot be!

– Assign those to pointing to their top choices to the highest priorities, and remove them along their

houses from the market

– Continue by induction . . .
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Serial Dictatorship

‚ Theorem: The Serial Dictatorship mechanism is strategy proof.

‚ Proof:

– The set of houses from which each agent chooses does not depend on their own preferences (it

depends on folks with higher priorities!).

– If they report other preferences, they will get the same set to choose from.

– Hence, the best they can do is to report their true preferences. No incentives to lie.
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BEEM147: Topics in Microeconomic Theory II
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Overview

Last week

‚ House allocation problems

‚ Serial Dictatorship algorithm

This week

‚ Housing markets

‚ Individual rationality and the core

‚ Top-Trading Cycle (TTC) algorithm

‚ House allocation with existing tenants
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Housing markets

‚ Same as house-allocation problem: pI ,H, pěi qiPI q, but agents initially own a house

– Agent i owns house hi

– Aim is to study mechanisms that respect property rights

‚ Key takeaways:

– Pareto efficiency not a sufficient criterion

– Serial Dictatorship not fully desirable

– Need new tools!
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Housing markets

Example (1)

I “ t1, 2, 3, 4u and H “ ta, b, c , du, with preferences (house initially owned underlined):

ą1: b, c , d , a; ą2: a, b, c , d ; ą3: a, c , d , b; ą4: a, d , b, c .

‚ Initial allocation not Pareto efficient.

‚ Agents 1 and 2 would want to trade. Resulting allocation is PE.

‚ Alternative: run SD. But not always sensible. Say π “ t3, 1, 2, 4u. Resulting matching:

µp1q “ b, µp2q “ c , µp3q “ a, µp4q “ d .

‚ µ is PE, but agent 2 has no incentives to participate in this mechanism: h2 “ b ą2 c.
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Housing markets

Example (2)

I “ t1, 2, 3u and H “ ta, b, cu, with preferences (house initially owned underlined):

ą1: b, c , a; ą2: a, b, c ; ą3: a, b, c .

Consider the matching :

µp1q “ c , µp2q “ b, µp3q “ a.

‚ µ is PE: SD with π “ t3, 2, 1u
‚ µ gives everyone a house at least as preferred as the one they initially own

‚ However, agents 1 and 2 would rather trade amongst themselves: b ą1 c and a ą2 b.
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Individual rationality and the core

‚ Matching µ is individually rational (IR) if µpiq ěi hi for every i P I
‚ A mechanism is IR if it always generates IR matchings

‚ IR captures notion of property rights

‚ Agents do not participate voluntarily in mechanisms that are not IR
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Individual rationality and the core

‚ However, IR not enough to guarantee that groups of agents wish to participate: Example (2)

‚ Matching µ is blocked by coalition A Ď I if D ν PMpI ,Hq s.th.

1. for all a P A, νpaq is initially owned by someone in A;

2. νpaq ěa µpaq for all a P A, and νpaq ąa µpaq for some a P A.

‚ Matching is in the core if it is not blocked by any coalition

‚ Note: the notion of the core is appealing when thinking on decentralized exchange

‚ Key questions:

– Is the core none-empty?

– Would agents “converge” to a matching by trading indefinitely amongst themselves?

– How do we find matchings in the core?
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Individual rationality and the core

‚ Proposition. Every matching in the core is individually rational and Pareto efficient.

‚ Proof:

– IR: If not IR ùñ coalition tiu blocks

– PE: If not PE ùñ coalition I blocks

‚ Note: Example (2) shows that converse is not true: being in the core is stronger than IR + PE
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Top-Trading Cycle

‚ Top-Trading Cycle Algorithm (TTC)

– Start: all houses are available and all agents are unmatched

– Agents point to their favorite available house, houses point to their owner

– Find all cycles:

h1 Ñ i1 Ñ h2 Ñ i2 Ñ ¨ ¨ ¨ Ñ hK Ñ iK Ñ h1

where hk`1 “ favorite house of ik

– Assign all agents to houses in a cycle, repeat until no more houses or agents.

‚ Advantages: TTC characterizes the core of a housing market, which has a unique matching. And it

is the unique strategy-proof, IR and PE mechanism.

‚ Disadvantages: not very intuitive, people often do not understand it

‚ Note: you should prove that the mechanism is well defined: does not get “stuck”

ContentsLecture 2: Housing Market



Top-Trading Cycle
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Top-Trading Cycle
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Top-Trading Cycle
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Top-Trading Cycle

Cycle
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Top-Trading Cycle
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Top-Trading Cycle

Cycle
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Top-Trading Cycle
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Top-Trading Cycle

‚ Proposition: TTC ùñ IR and PE matching

‚ Proof:

– PE: very similar to SD. Assume not: D matching ν that Pareto dominates µ (TTC outcome)

– All agents leaving in round 1 get their top choice in µ, so νpiq “ µpiq for i P I1

– Agents leaving in round 2: cannot get sth strictly better in ν, since that would mean they are getting

sth that went away in round 1. Hence, νpiq “ µpiq for i P I2. Continue by induction to reach

contradiction.

– IR: Houses never leave before their owners. Agents can always choose their house in the round in

which they leave.
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Top-Trading Cycle

‚ Theorem: Core is unique & core = tTTC-outcomeu
‚ Background:

– Shapley and Scarf (1974) proved core is non-empty w/o using TTC

– David Gale proposed the TTC as a simpler way to prove result

– Roth and Postlewaite (1977) proved that the core is unique
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Top-Trading Cycle

‚ Theorem: Core is unique & core = tTTC-outcomeu
‚ Proof:

– First, show that TTC-outcome is in the core

– Assume it is blocked by coalition A with ν. Take j = first agent in A who leaves with νpjq ąj µpjq.
– Then, νpjq left before j . Let a1 P A be the owner of νpjq. Consider the cycle in which a1 leaves:

a1 Ñ ha2 Ñ a2 Ñ ha3 Ñ a3 Ñ ¨ ¨ ¨ Ñ ham Ñ am Ñ ha1 .

– Since νpa1q “ µpa1q ñ ha2 “ νpa1q, so a2 is in the coalition.

– Hence, νpa2q “ µpa2q “ ha3 and a3 is in the coalition, . . . am is in the coalition.

– However, ha1 “ µpamq “ νpamq is a contradiction, since we had ha1 “ νpjq
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Top-Trading Cycle

‚ Theorem: Core is unique & core = tTTC-outcomeu
‚ Proof:

– Second, show there is no other matching in the core. Let ν ‰ µ.

– Let i be first agent who leaves with µpiq ‰ νpiq.
– Every agent who leaves before gets the same house in µ and ν.

– Every agent who leaves along i is getting a house from someone who leaves at the same time or

afterwards.

– Since µpiq is i ’s top-choice among all these houses, µpiq ąi νpiq.
– Then, agents who leave along i can form a coalition and block ν with µ.

– Hence, ν is not in the core.
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Top-Trading Cycle

‚ Theorem (Roth, 1982): TTC is strategy-proof

‚ Proof:

– Key for the proof: an agent cannot affect the cycles who leave the market before by changing their

preferences. Even if they point to a house in a cycle, no one in the cycle will point to their house.

– No gain from leaving “early” since they can always keep pointing to their top choice, instead of

“closing” a cycle that will go nowhere.

– No gain in leaving “late” since they can only get something worse.
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Top-Trading Cycle

‚ Theorem (Ma, 1994): TTC ðñ SP + PE + IR

‚ Proof:

– Let τ = TTC and φ ‰ τ s.th. φ is also SP, PE and IR.

– The key is showing: φrpěi qspiq “ τ rpěi qspiq for agents leaving in round 1, in I1.

– Suppose not ñ D i1 with τ rpěi1qspi1q ąi1 φrpěi1qspi1q ěi h1 (last from φ-IR)

– Then, i1 is trading with someone in roud 1, consider cycle:

i1 Ñ h2 Ñ i2 Ñ h3 Ñ ¨ ¨ ¨ Ñ im Ñ h1 Ñ i1, where hk`1 “ top choice of ik .

– Consider ě1i for i P I1: top-choice in ě1i is same as ěi , but second choice in ě1i is hi

– When reporting ě1i in φ, agents in I1 get their top choice (hk`1), or their own house (hk).

– φ-SP ñ i1 gets h1 when reporting ě1i to φ; otherwise, i1 would lie: they’d get h2, which is better than

what they are getting when reporting ěi to φ.
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Top-Trading Cycle

‚ Theorem (Ma, 1994): TTC ðñ SP + PE + IR

‚ Proof:

[. . . ]

– φ-SP ñ i1 gets h1 when reporting ě1i to φ; otherwise, i1 would lie: they’d get h2, which is better than

what they are getting when reporting ěi to φ.

– Since i1 keeps their own house at φpě1i ,ě´i q, if im also misreports ě1m, they would also keep their own

house, hm (sine the only other possibility is to get h1, which is being assigned to i1).

– Consecutively, every agent in the cycle gets their own house when they report ě1i . But this is a

contradiction, since this is not PE: they can trade to the TTC allocation and be (strictly) better off.

– Therefore, τ and φ assign the same houses to those in round 1 at pěi q. By induction, the same holds

for all agents leaving in further rounds, and we have a contradiction.
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House-allocation with existing tenants

‚ House-allocation problem with existing tenants = pIE , IN ,HO ,HV , pěi qiPI q
– IE “ existing tenants (already own a house)

– IN “ new applicants (do not own a house)

– HO “ houses owned by existing tenants

– HV “ vacant houses

– Assume ěi P PpHO Y HV q
‚ A house-allocation problem with existing tenants is the middle ground between a house-allocation

problem and a housing market

– Obtain house-allocation problem if IE “ HO “ H
– Obtain housing market if IN “ HV “ H
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House-allocation with existing tenants

‚ Most common application: assigning university housing to undergraduate students

– Existing tenants are students who already own a room

– New applicants are new students who do not have a room

‚ In the next slides, study three mechanisms used in practice

1. Serial Dictatorship with Squatting Rights aka. “housing lottery” (used in CMU, Duke, Michigan,

Northwestern, and Penn)

2. Serial Dictatorship with Waiting List

3. MIT NH4 (used in a residency at MIT)

‚ And an extension of TTC to existing tenants
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House-allocation with existing tenants

‚ Serial Dictatorship with Squatting Rights (“housing lottery”)

– Run a Serial Dictatorship (assigning priorities randomly), but, before running the mechanism, allow

existing tenants to opt out of the mechanism and be assigned to their current house

– Exercise: is this mechanism Pareto efficient? Strategy-proof?

‚ Serial Dictatorship with Waiting List

– Run a Serial Dictatorship with π, but give priority to existing tenants over their houses.

– The house owned by existing tenant πpkq is not available to any agent with a priority higher than

πpkq, and is available to agents with lower priority than πpkq only if the existing tenant chooses

another house in round k.

– Exercise: is this mechanism Pareto efficient? Strategy-proof?
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House-allocation with existing tenants

‚ MIT NH4

– π “ priority order. Assign houses tentatively according to π as in a Serial Dictatorship, until all

houses are assigned or a squatting conflict occurs.

– A squatting conflict occurs if it is the turn of an existing tenant, say i P IE , and they find all of the

available houses worse than hi .

– Call the agent who was tentatively assigned to hi the conflicting agent.

– Erase all the assignments made up to the conflicting agent, and assign the existing tenant to the

house they previously owned.

– At this point, the squatting conflict is resolved. Restart the algorithm with the conflicting agent, and

resolve all the subsequent squatting conflicts in the same manner.

– Exercise: is this mechanism Pareto efficient? Strategy-proof?
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House-allocation with existing tenants

‚ TTC with existing tenants

– π “ priority order. Initially, all agents are unassigned, and the set of available houses is the set of

vacant houses.

– Unassigned agents point to their favorite house in the market (available or unavailable), available

houses point to the unassigned agent with the highest priority, and occupied houses point to their

owners.

– Find all cycles and remove them from the market by assigning the agents to the houses they are

pointing to within each cycle

– If an existing tenant is assigned to a house, and the house they previously owned is not part of any

cycle, it becomes available in the next round.

ContentsLecture 2: Housing Market



House-allocation with existing tenants

‚ Theorem (Abdulkadiroğlu and Sönmez, 1999): The TTC with existing tenants is Pareto

efficient, individually rational, and strategy-proof.

‚ Exercise: Prove this Theorem. The proof goes along the same lines as the ones we have already

done.

ContentsLecture 2: Housing Market



Week 3: Kidney Exchange

BEEM147: Topics in Microeconomic Theory II

Matching and Market Design

Spring Term 2021

University of Exeter

ContentsLecture 3: Kidney Exchange



Overview

‚ Last week

– Housing markets

– TTC and the core

– House allocation with existing tenants

‚ This week

– Kidney exchange

– Kidneys as houses, tenants as donors

– Pairwise kidney exchange
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Kidney Exchange

‚ Transplanted kidneys come from both deceased and living donors

‚ Cadaveric kidneys allocated by a queue or waiting list

‚ Problem: there is a shortage of kidneys

‚ In 2016, more than 100,000 people were waiting for a kidney transplant in the U.S.

‚ The median patient waits 3.5 years to receive a kidney

‚ In 2014, 17k+ kidney transplants in the U.S.: 67.6% cadaveric and 32.4% from living donors

‚ In every country in the world (except Iran), it is illegal to buy and sell human kidneys
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Kidney Exchange

‚ Until the early 2000s, living donors were only relatives or loved-ones

‚ From the early 2000s, the exchange of kidneys has been growing

‚ Why? Not everyone can donate a kidney to any one. Donors and recipients need to have

compatible blood and tissue types.

‚ Two-way (pairwise) exchange:

– your donor gives their kidney to patient k, and the donor of patient k gives you their kidney

‚ Multiple exchange:

– There are K pairs of donors and patients

– Donor k P t1, . . . ,K ´ 1u gives their kidney to patient k ` 1, and either (i) donor K gives their kidney

to patient 1, or (ii) patient 1 is given a high priority in the cadaveric queue (aka. indirect exchange).
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Blood and tissue type compatibility

‚ ABO blood-types: O, A, B, or AB

‚ Every blood-type can donate to itself, but not to everyone else:

O

A

B

AB

‚ Tissue-types (known as HLA type) depend on 6 proteins

– The stronger the match, the more likely that the transplant will be successful

– Need to test for antibodies. If recipient has antibodies for tissue type of donor, transplant is not viable.
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Kidneys as houses, tenants as donors

‚ Simplest case:

– Patients with donors ÐÑ existing tenants with houses

– Patients w/o donors ÐÑ new applicants

– Kidneys from “altruistic” or deceased donors ÐÑ empty houses

‚ Slight caveats when applying TTC:

– Kidneys in the cadaveric queue are ex-ante unknown: matching patients to waiting list is a lottery.

– May create chains instead of cycles; a patient may be in multiple chains (each terminating in the

waiting list).

– Need to select one among multiple possible chains; see Roth, Sönmez, and Ünver (2004)

– Transplants must be simultaneous. Hard to handle long cycles logistically.
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Pairwise kidney exchange

‚ Restrict to two-way exchanges

‚ Questions: how to maximize the number of transplants? Is there a trade-off between priority and

quantity of transplants?

‚ pI ,Rq “ pairwise kidney exchange problem

‚ I “ t1, 2, . . . , nu set of donor-patient pairs

‚ R “ prijqi‰j compatibility matrix

– rij “ 1 iff donor i can donate to j and donor j can donate to i

‚ Matching: µ : I Ñ I s.th. µpiq “ j iff µpjq “ i and rij “ 1.

– µpiq “ i indicates i receives no kidney under µ

‚ MpI ,Rq “ set of all matchings
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Pairwise kidney exchange

‚ Set of patients who receive a kidney under µ:

Mµ “ ti P I : µpiq ‰ iu .

‚ Matching µ is efficient if there does not exist matching ν such that

Mµ Ď Mν and Mµ ‰ Mν .

‚ Question: to determine if a matching is efficient, is it enough to count the number of patients

receiving a kidney?

– A: Yes, but it is not obvious. Requires some tools to prove.
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Matroids

‚ A matroid is a pair pX , Iq where X is a finite set, called the ground set, and I a collection of

subsets of X , called the independent sets, that satisfy the following properties:

(i) the subsets of independent sets are also independent, i.e., if J P I and J 1 Ď J then J 1 P I;

(ii) if one independent set J is larger than another one J 1, i.e., |J| ą |J 1|, then there exists x P JzJ 1 such

that J 1 Y txu is an independent set.

‚ Examples:

(a) The collection of all linearly independents columns of a matrix forms a matroid

(b) Let n ď |X | ă 8, and I “ tS Ď X : |S | ď nu, then pX , Iq is a matroid
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Matroids and matchable pairs

‚ Let I be the collection of all groups of patient-donor pairs that are matchable, i.e.,

I “ tJ Ď I : Dµ PMpI ,Rq s.t. J Ď Mµu .

‚ Proposition: pI , Iq is a matroid.

‚ Proof: see the lecture notes

‚ The key is property (ii) of a matroid:

(ii) if there are two sets J, J 1 Ď I with |J| ą |J 1| and two matchings µ and µ1 such that J Ď Mµ,

J 1 Ď Mµ1 , then there exists i P JzJ 1 and ν PMpI ,Rq such that J 1 Y tiu Ď Mν .

‚ Proposition: If µ, ν PMpI ,Rq are efficient, then |Mµ| “ |Mν |.
‚ Proof: Follows from (ii): if µ and ν are efficient with |Mµ| ą Mν , then there exists ν1 and

i P MµzMν such that Mν Y tiu Ď Mν1 , which contradicts ν being efficient.
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Priority mechanisms

‚ Fix a priority order over I , for simplicity: π “ t1, 2 . . . , nu
‚ Let E0 “MpI ,Rq
‚ In step 1, E1 “ the set of all matchings µ under which patient 1 receives a kidney.

‚ In step 2, E2 “ all the matchings µ P E1 in which patient 2 also receives a kidney, and so on.

‚ Formally, for every k ď n,

Ek “

$
’&
’%

 
µ P Ek´1 : µpkq ‰ k

(
if D µ P Ek´1 s.th. µpkq ‰ k

Ek´1 otherwise

‚ The set of priority matchings is given by En.

‚ Intuition: match as many patients as possible starting with the patient with the highest priority

and following the priority ordering, never “skipping” or “sacrificing” a higher priority patient

because of a lower priority patient.
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Priority mechanisms

‚ Proposition: Every priority matching is efficient

‚ Proof: left as an exercise

‚ Intuition: There is no trade-off between priority allocation and the number of transplants that can

be arranged
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Priority mechanisms

‚ In practice, a patient could decline a medically compatible kidney (e.g., do not want to receive a

kidney from an older donor, or a smoker)

‚ Proposition: Let Ai Ď Ki be the subset of kidneys i reports as acceptable, where

Ki “ tj : rij “ 1u. In a priority matching, it is strategy-proof for patients to report Ai “ Ki .

‚ Proof: By misreporting compatible kidneys, unmatched patients can only decrease the chances of

being matched under a priority mechanism: for patient k, the sets Ek1
shrink if they misreport, for

k 1 ă k.
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Overview

‚ Last week

– Kidney exchange

– Kidneys as houses, tenants as donors

– Pairwise kidney exchange

‚ This week

– Random allocations

– Stochastic dominance and ordinal efficiency

– Random Serial Dictatorship

– Top-Trading Cycle with Random Endowments

– Probabilistic Serial Mechanism
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Random allocations

‚ pI ,X “q random allocation problem

– I “ set of n agents

– X “ set of n objects

‚ Same ingredients as house allocation problem

‚ Random allocation: n ˆ n bistochastic matrix P where

Pix “ Ptagent i gets object x}

‚ Bistochastic matrix: rows and columns add up to 1: @ i P I , x P X
ÿ

x 1PX
Pix 1 “ 1 and

ÿ

i 1PI
Pi 1x “ 1

‚ Note: every agent is assigned to exactly one object w.p.1
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Ordinal Preferences

Example

X “ t$0, $10, $18u. Agents prefer more money than less. Consider agent i and the random allocations

P and Q:

Pi,$10 “ 1 and Qi,$0 “ Qi,$18 “ 1{2.

Under P, agent i gets $10 for sure. Under Q they get $0 with probability 1/2 and $18 otherwise.

Does agent i prefer P or Q?

Given ěi , we cannot tell. An agent may find Q too risky and prefer P, or may not mind the risk and

prefer Q.

ContentsLecture 4: Random Allocations



First-Order Stochastic Dominance

Example

X “ tapple, banana, orangeu. Assume

apples ąi oranges ąi bananas.

Consider random allocations P and P 1:

Pi,oranges “ 1 and P 1
i,apples “ P 1

i,oranges “ 1{2.

Does agent i prefer P or P 1?

Reasonable to assume i prefers P 1 over P. It gives higher probability to more preferred objects. No

trade-off between preferences and risk.
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FOSD and Ordinal Efficiency

‚ Random allocation P (first-order) stochastically dominates Q if for every i P I and every x P X ,

ÿ

yPX :yěix

Piy ě
ÿ

yPX :yěix

Qiy .

Intuition: P FOSD Q if it gives more probability to objects higher in the preference ranking

‚ FOSD is not a complete order

‚ A random allocation is ordinally efficient if there is no other random allocation that stochastically

dominates it

‚ Why not use Pareto efficiency? Would agents agree to participate in a mechanism that is not

ordinally efficient?
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Why not cardinal preferences?

‚ Assume each i has utility ui : X Ñ R

‚ Agent i prefers P over Q if
ÿ

xPX
ui pxqPix ě

ÿ

xPX
ui pxqQix

‚ Expected-utility ranking is complete over all random allocations

‚ Upěq “ set of utility functions that represent ě

‚ Proposition: random allocation P first-order stochastically dominates Q if and only if for every

i P I and every utility function ui P Upěi q,
ÿ

xPX
ui pxqPix ě

ÿ

xPX
ui pxqQix .

‚ Intuition: using FOSD as ranking criteria amounts to being agnostic about cardinal utilities
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Random Serial Dictatorship

‚ Choose priority order π uniformly at random, then run Serial Dictatorship

‚ Advantages: very simple and fair (widely used)

‚ Disadvantage: it is not ordinally efficient

‚ Counterexample:

– I “ t1, 2, 3, 4u and X “ tx , yu
– x ą1,2 y and y ą3,4 x

– P “ random allocation from RSD

– Can show (not obvious!): P1x “ 5{12 and P2x “ 1{12 (symmetric for other agents)

– Q “ flip two coins: first assigns x btw 1 and 2, second assigns y btw 3 and 4

ñ Q1x “ 1{2 and Q2x “ 0

– Both P and Q assign an object with 1/2 prob. But Q puts all mass on top choice: Q FOSD P.
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Top-Trading Cycle with Random Endowments

‚ First, assign objects to agents uniformly at random. Then, run TTC.

‚ Advantages: TTC has good properties in the deterministic case

‚ Disadvantage: It suffers from the same shortcomings as RSD; actually, they are equivalent

‚ Theorem (Abdulkadiroğlu and Sönmez 1998): RSD and TTC with random endowments generate

the same random allocation for every preference profile.
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Probabilistic Serial Mechanism

‚ Is there a mechanism that is ordinally efficient? Yes!

‚ Probabilistic Serial (Bogomolnaia and Moulin 2001):

– Think of each object as a cake of size 1

– Time is continuous t P r0, 1s.
– Each agent “eats” from their favorite cake, among the ones that have not been finished.

– All agents eat at speed 1, from one cake at a time.

– Pix “ share of cake x eaten by i at time t “ 1
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Probabilistic Serial Mechanism: Example

‚ I “ t1, 2, 3, 4u and X “ tw , x , y , zu
‚ Preferences:

ą1,ą2: x , y , z ,w , and ą3,ą4: y , x ,w , z .

‚ At time t “ 0:

– Agents 1 and 2 start eating x ; agents 3 and 4 start eating y

‚ At time t “ 1{2:

– Agents 1 and 2 finish x and start eating z ; agents 3 and 4 finish y and start eating w

‚ Hence,

P1x “ P2x “ P3y “ P4y “ 1{2
P1z “ P2z “ P3z “ P4w “ 1{2

otherwise “ 0
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Probabilistic Serial Mechanism

‚ Theorem (Bogomolnaia and Moulin 2001): For every profile of preferences, the Probabilistic Serial

mechanism produces an ordinally efficient random allocation.

‚ Before proving, useful lemma . . .

ContentsLecture 4: Random Allocations



Probabilistic Serial Mechanism

‚ Define graph: y Ñ x if D i P I s.th. x ąi y and Ppi , yq ą 0

‚ Lemma: If P is stochastically dominated by another random allocation, then the graph has a cycle.

‚ Proof:

– Let Q FOSD P ñ D i1 P I , x P X , x1 P X s.th. x1 ą1 x , Qpi1, x1q ą Ppi1, x1q & Qpi1, xq ă Ppi1, xq
(Exists some agent for which Q gives more mass to more preferred objects than P)

– ñ x Ñ x1

– Since
ř

iPI Qpi , x1q “
ř

iPI Ppi , x1q “ 1, exists i2 P I s.th. Qpi2, x1q ă Ppi2, x1q.
– Q FOSD P ñ D x2 P X s.th. x2 ą2 x1 & Qpi2, x2q ą Ppi2, x2q
– ñ x1 Ñ x2

. . . D i3 P I s.th. Qpi3, x2q ă Ppi3, x2q . . . D x3 P X s.th. x3 ą3 x2 & Qpi3, x3q ą Ppi3, x3q ñ x2 Ñ x3 . . .

– Since X is finite, eventually we must find a cycle.
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Probabilistic Serial Mechanism

‚ Theorem (Bogomolnaia and Moulin 2001): For every profile of preferences, the Probabilistic Serial

mechanism produces an ordinally efficient random allocation.

‚ Sketch of proof:

– Idea: agents within a cycle would like to exchange probabilities. But this cannot happen under the

Probabilistic Serial mechanism

– Consider cycle: x Ø y ñ D i1, i2 P I s.th.

- i1 prefers x to y , and gets y with positive probability

- i2 prefers y to x , and gets x with positive probability

– t1 “ time at which i1 starts eating y ñ x is finished by t1 ñ x is finished before y

– t2 “ time at which i2 starts eating x ñ y is finished by t2 ñ y is finished before x

– Contradiction!
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Overview

‚ Last week

– Random allocations: stochastic dominance and ordinal efficiency

– Random SD and TTC with random endowments

– Probabilistic Serial Mechanism

‚ This week

– Two-sided matching: marriage market

– Stability and efficiency: Gale-Shapley algorithm

– Structure of set of stable matchings

– Incentives in the marriage market

– Matching with transferable utility
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Two-sided matching

‚ Marriage market: pM,W , pěmqmPM , pěw qwPW q
– M “ set of men (finite)

– W “ set of women (finite and W XM “ H)

– ěm P PpW Y tmuq for every m P M

– ěw P PpM Y twuq for every w PW

‚ Note: agents may wish to remain single, e.g. w ąm w 1 ąm m ąm w2

‚ Matching: µ : M YW Ñ M YW such that, for all m P M and w PW
(i) µpmq PW Y tmu
(ii) µpwq P M Y twu
(iii) µpmq “ w if and only if µpwq “ m

‚ MpM,W q “ set of matchings between M and W
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Marriage Market: Example

Demand Supply

-  “Demand” 

-  “Women” 

-  “Buyers” 
-  “Students” 

-  “Workers” 

-  etc…

-  “Supply” 
-  “Men” 

-  “Sellers” 
-  “Schools” 

-  “Firms” 

-  etc…

ContentsLecture 5: Marriage Market



Marriage Market: Example

Demand Supply

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4
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Marriage Market: Example

Demand Supply

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

WHO GETS MATCHED 
TO WHOM? AND WHY?
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Efficiency and Stability

‚ Matching µ is Pareto efficient if there is no other matching µ1 such that µ1piq ěi µpiq for all

i P M YW and µ1piq ąi µpiq for some i P M YW .

‚ Agent i is acceptable for agent j if i ąj j .

‚ Matching µ is individually rational if µpiq is acceptable for every i P M YW .

‚ A pair pm,wq P M ˆW blocks a matching µ if w ąm µpmq and m ąw µpwq.
‚ A matching is stable if it is individually rational and admits no blocking pair.

‚ SpM,W ,ěq “ set of all stable matchings in pM,W ,ěq.
‚ Question 1: are stable matchings Pareto efficient and vice versa?

‚ Question 2: do stable matchings always exist? If so, how to find them?
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Efficiency and Stability

‚ Question 1: are stable matchings Pareto efficient and vice versa?

‚ Proposition: Every stable matching is Pareto efficient

‚ Proof:

– By contradiction: suppose µ1 Pareto dominates stable matching µ

– Wlog suppose µ1pmq ąm µpmq
– Let w 1 “ µ1pmq. Then m “ µ1pw 1q ąw 1 µpw 1q since µ1 Pareto dominates µ.

– Then, pm,w 1q block µ, contradiction.

‚ Exercise: Is every Pareto efficient matching stable?

‚ Question: Are the First and Second Welfare Theorems satisfied in a marriage market?
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Efficiency and Stability

‚ Question 2: do stable matchings always exist? If so, how to find them?

‚ Before answering question, why do we care?

– Stability is desirable in centralized settings. Participants will deviate from mechanisms that do not

generate stable matchings.

– Decentralized markets are likely to converge to stable matchings (same intuition as the core).

‚ Answer to Q2: Yes! Answer provided by David Gale and Lloyd Shapley in 1962. It relies on their

celebrated Deferred Acceptance (DA) algorithm.
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Gale-Shapley Algorithm

‚ Men-proposing version (woman-proposing is analogous)

‚ Initially, all men are active and no agent is provisionally matched. Proceed in steps:

– All active men propose to their most preferred woman, among the ones they have not proposed to

previously.

– Each woman considers the set of men who have just proposed to her, and their provisional partner (if

they have one). Women become provisionally matched to their favorite man among this set. All men

who are not provisionally matched become active.

– Stop if there are no active men, or if all active men have proposed to all acceptable women.

‚ Theorem: the output of the Gale-Shapley algorithm is a stable matching.

‚ Key intuition: Men go from top to bottom in their ranking, women go from bottom to top.
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Gale-Shapley Algorithm: Example

Demand Supply

1

1

1

1 1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4
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Gale-Shapley Algorithm: Example

Demand Supply

1

1

1

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2
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Gale-Shapley Algorithm: Example

Demand SupplySTABLE MATCHING
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Gale-Shapley Algorithm

‚ Theorem: the output of the Gale-Shapley algorithm is a stable matching.

‚ Proof:

– µ “ output of men-proposing GS-algorithm

– Men only propose to acceptable women; women only accept proposals from acceptable men

ñ µ is individually rational

– Let m P M and w PW be s.th. w ąm µpmq (does w prefer m over µpwq? No!)

– Why? m proposed to w in some iteration of the algorithm, and w rejected m for m1

– Then, µpwq ěw m1 ąw m

ñ pm,wq do not block µ

ñ µ is stable
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Brute-force stable matching

‚ Question: can we find a stable matching by “brute force”?

‚ Answer: Yes, we can start with any matching and randomly match blocking pairs. Eventually, we

will reach a stable matching (though it may take too long!)

‚ Theorem (Roth and Vande Vate, 1990): Let µ be any matching. There exists a finite sequence

of matchings µ1, µ2, . . . , µk , such that µ1 “ µ, µk is stable, and for each i “ 1, . . . , k ´ 1, there is

a blocking pair pmi ,wi q for µi such that µi`1 is obtained from µi by satisfying the blocking pair

pmi ,wi q.
‚ Proof: omitted (read the lecture notes)
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Opposition of interests

‚ Question: does it matter who proposes in the DA algorithm?

‚ Answer: Yes! Make an example in which both versions of the algorithm do not reach the same

matching.

‚ Actually, this is crucial . . .

‚ Theorem (Gale and Shapley, 1962): Let µM and µW be the outcomes of the men- and

women-proposing Gale-Shapley algorithms, respectively. Then, for every µ P SpM,W ,ěq,

@m P M, µMpmq ěm µpmq ěm µW pmq;
@w PW , µW pwq ěw µpwq ěw µMpwq.

‚ Note: all men prefer µM over every other stable matching, and find µW to be the worst one. The

women have exactly the opposite preferences!

‚ µM is the M-optimal stable matching; µW is the W-optimal stable matching
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Opposition of interests

‚ Theorem (Gale and Shapley, 1962): µM and µW outcomes of the men- and women-proposing

GS-algorithms. Then, @ µ P SpM,W ,ěq, m P M, w PW ,

µMpmq ěm µpmq ěm µW pmq & µW pwq ěw µpwq ěw µMpwq.
‚ Proof:

– First, show that µMpmq is the best partner for m out of

Am “ tw PW : Dµ P SpM,W ,ěq s.t. w “ µpmqu.

– Suppose not: D m P M who is the first to propose to w P Am and is rejected (against m1).

– Then, m1 ąw m, and m1 finds w at least as good as everyone in Am1 (o/w he would’ve been rejected

by someone in Am1 ).

– Since w P Am, D µ P S s.th. w “ µpmq.
– However, note that pm1,wq block µ since w ąm1 µpm1q. Contradiction!
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Opposition of interests

‚ Theorem (Gale and Shapley, 1962): µM and µW outcomes of the men- and women-proposing

GS-algorithms. Then, @ µ P SpM,W ,ěq, m P M, w PW ,

µMpmq ěm µpmq ěm µW pmq & µW pwq ěw µpwq ěw µMpwq.

‚ Proof:

– Second, we show that µM is the worst matching for women.

– Suppose not: D w PW s.th. µMpwq ąw µpwq for some µ P S
– We know that w ąµM pwq µpµMpwqq; that is, whoever is matched with w under µM , µMpwq, ranks w

above whoever they are matched with in any other stable matching, in particular, µ.

ñ D m P M s.th. w ąm µpmq and m ąw µpwq.
ñ pm,wq are a blocking pair for µ, a contradiction.
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Opposition of interests

‚ This notion of opposite interests goes beyond the extremal matchings µM and µW

‚ Define the binary relations ąM and ąW over MpM,W q:
– µ ąM µ1 if µpmq ěm µ

1pmq for all m P M;

– µ ąW µ1 if µpwq ěw µ
1pwq for all w PW .

‚ Theorem (Knuth, 1976): If µ and µ1 are stable matchings, then µ ąM µ1 if and only if µ1 ąW µ.

‚ Proof:

– Let µ, µ1 P S be s.th. µ ąM µ1. Towards a contradiction: suppose not µ1 ąW µ

ñ D w PW s.th. µpwq ąw µ
1pwq

– Then, man m “ µpwq is matched to another woman under µ1, which he prefers less to w (since

µ ąM µ1).

ñ m ąw µ
1pwq and w ąm µ

1pmq
ñ pm,wq block µ1, contradiction.
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Lattice Structure

‚ The above results suggest that the set of stable matchings S can be ordered in some way

‚ For any two matchings µ, µ1, define the join of µ and µ1 as the matching µ_M µ1 such that, for

every m P M and w PW ,

µ_M µ1pmq “

$
’&
’%
µpmq if µpmq ąm µ

1pmq
µ1pmq if µ1pmq ąm µpmq

& µ_M µ1pwq “

$
’&
’%
µ1pwq if µpwq ąw µ

1pwq
µpmq if µ1pwq ąw µpwq

‚ Note: µ_M µ1piq stands for the agent matched with i in matching µ_M µ1.

‚ Define the meet of µ and µ1 as the matching µ^M µ1 such that, for every m P M and w PW ,

µ^M µ1pmq “

$
’&
’%
µ1pmq if µpmq ąm µ

1pmq
µpmq if µ1pmq ąm µpmq

& µ^M µ1pwq “

$
’&
’%
µpwq if µpwq ąw µ

1pwq
µ1pmq if µ1pwq ąw µpwq
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Lattice Structure

‚ Theorem (Conway): If µ and µ1 are stable matchings, then both µ_M µ1 and µ^M µ1 are stable

matchings.

‚ Proof: omitted (read the lecture notes)

‚ Intuition:

– The set of stable matchings S is a lattice

– Lattice = partially ordered set X in which every two-element subset tx , yu Ď X has a “join” x _ y

and a “meet” x ^ y , both of them elements in X .

– See the lecture notes for a formal definition, but it is very simple to illustrate . . .
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Examples of Lattice Structures

µM µW µM

µ

µ1

µW

µM µ µW µM µ1

µ2

µ12

µW
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Stable matchings as fixed points

‚ Elegant characterization of stable matchings that yields existence and lattice structure via a

fixed-point argument, due to Adachi (2000)

‚ Idea:

– Define prematchings: same as matchings but two people can be matched with the same agent (i.e.,

prematchings need not be “reciprocal”)

– For prematching (or “fantasy”) ν define the sets

Apm, νq “ tw PW : m ěw νpwqu & Apw , νq “ tm P M : w ěm νpmqu .

– Api , νq is the set of agents that find i acceptable given their current “partner” under ν

– Define mapping ν ÞÑ Tν as follows:

- pTνqpmq “ most preferred woman in Apm, νq Y tmu
- pTνqpwq “ most preferred man in Apw , νq Y twu
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Stable matchings as fixed points

‚ Idea (cont’d):

– Define ď as follows: ν ď ν1 if

p@m P Mq ν1pmq ěm νpmq & p@w PW q νpwq ěw ν
1pwq.

– Lemma 1: T is monotone increasing, ν ď ν1 implies Tν ď Tν1.

– Lemma 2: A matching µ is stable if and only if it is a fixed point of T .

– Theorem (Tarski): The set of fixed points of a monotone function on a lattice is a nonempty and

complete lattice.

– Note: this provides an additional algorithm to find extremal stable matchings:

- Let ν̄ be a prematching where ν̄pwq “ w for all w and νpmq is the best alternative in W Y tmu for all m

- Define ν0 “ ν̄ and νk`1 “ Tνk

- Then, there is K ă 8 s.th. µ “ νK is a stable matching (indeed, it is µM from the def. of ď)

- The result follows from the monotonicity of T : T pT ν̄q ď T ν̄ ď ν̄ implies ¨ ¨ ¨ νk`1 ď νk ď ¨ ¨ ¨ ď ν̄.

- The sequence is decreasing and the set of prematchings is finite.
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Incentives in the marriage market

‚ Question: Is the Gale-Shapley algorithm strategy-proof?

‚ Answer: No! Actually, there exists no strategy-proof mechanism that always generate stable

matchings (but there are strategy-proof mech’s that always generate Pareto efficient matchings).

‚ Remark: Serial dictatorship is strategy-proof and Pareto efficient

‚ Proof: try it as an exercise (hint: ignore one side of the market, treat it as if they were “objects,”

and run SD with the preferences of the other side)
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Incentives in the marriage market

‚ Theorem: There is no mechanism that is stable and strategy-proof.

‚ Proof:

– M “ tm1,m2u and W “ tw1,w2u
– Let ěmi rank wi over w3´i over mi . Let ěwi rank m3´i over mi over wi

– Two stable matchings: µMpmi q “ wi for i “ 1, 2, and µW pmi q “ w3´i for i “ 1, 2

– Let φ be a stable mechanism. Then, φpěq must coincide with either µM or µW . Say wlog that it

coincides with µM .

– Consider the preference ě1w1
that ranks m2 over w1 over m1; thus making m1 unacceptable.

– There is a single stable matching in pM,W , pěm1 ,ěm2 ,ě1w1
,ěw2qq and it coincides with µW .

– So φ is not strategy-proof as m2 “ µW pw1q ąw1 µMpw1q “ m1.
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Incentives in the marriage market

‚ There is a silver lining!

‚ Theorem: The men-proposing Gale-Shapley mechanism is (group) strategy-proof for the men.

‚ Proof: omitted (read in Chapter 4 of Roth and Sotomayor, 1990)

‚ Intuition:

– Men are already “going down” their preference list

– Even if m misreports his preference by ranking a woman w who is better than µMpmq, note that m is

already being rejected by w in the course of the GS-algorithm.

– The result is stronger since it implies that not even coalitions of men can obtain a better matching

than µM by coordinating the way in which they misreport their preferences.
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Matching with transferable utility

‚ The Assignment Game of Shapley and Shubik (1971)

‚ pB,S , αq “ matching market with transfers

– B “ set of buyers (finite)

– S “ set of sellers (finite and disjoint of B)

– α “ pαijqiPB,jPS is the surplus matrix

– αij “ surplus generated from match pi , jq
– Idea: if pi , jq are matched they share αij (split it among themselves with a transfer)

‚ Final utilities:

– ui “ utility of i

– vj “ utility of j

– if pi , jq are matched, then ui ` vj “ αij
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Matching with transferable utility

‚ Matching: matrix x “ pxijqiPB,jPS such that xij ě 0, and for all pi , jq P B ˆ S ,

ÿ

sPS
xis ď 1 and

ÿ

bPB
xbj ď 1.

‚ xij “ 1 means that pi , jq are matched

‚ In principle, xij may be in p0, 1q
– Can interpret as the probability of pi , jq being matched (but, as we’ll see, this will not play any role)

‚ Assignment: pair of vectors u “ pui qiPB and v “ pvjqjPS such that ui ě 0, vj ě 0 and there exists

a matching x satisfying
ÿ

iPB
ui `

ÿ

jPS
vj “

ÿ

iPB,jPS
αijxij .

‚ In such case, say that matching x supports assignment pu, vq
‚ Intuition: an assignment is a redistribution of the total surplus generated by a matching
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Matching with transferable utility

‚ Matching x is efficient it maximizes the total surplus in the economy, i.e., if it solves the linear

program:

max
xijě0

ÿ

iPB,jPS
xijαij subject to:

ÿ

jPS
xij ď 1 @i P B (‹)

ÿ

iPB
xij ď 1 @j P S .

‚ Assignment pu, vq is in the core if ui ` vj ě αij for every pi , jq P B ˆ S .

‚ Intuition: If ui ` vj ă αij , then pi , jq can block assignment pu, vq by trading amongst themselves

and sharing αij .

‚ Note: a feasible assignment is in the core if and only if

ui “ max tαis ´ vs : s P Su , and vj “ max tαbj ´ ub : b P Bu .
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Efficiency and the core

‚ Question 1: What is the relationship between efficient matchings and core assignments?

‚ Question 2: Are core assignments supported by efficient matchings?

‚ Answer: Yes! There is a duality between efficient matchings and core assignments, in the sense

that one implies the other.

‚ Theorem (Shapley and Shubik, 1971): For every efficient matching x , there exists a core

assignment pu, vq such that
ř

i ui `
ř

j vj “
ř

i,j αijxij . Likewise, every core assignment is

supported by an efficient matching.
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Efficiency and the core

‚ Theorem (Shapley and Shubik, 1971): For every efficient matching x , there exists a core

assignment pu, vq such that
ř

i ui `
ř

j vj “
ř

i,j αijxij . Likewise, every core assignment is

supported by an efficient matching.

‚ Sketch of proof:

– Proof relies on linear programming duality

– (‹) is a linear program

– Its dual characterizes core assignments: the vectors pu, vq are the Lagrangean multipliers associated to

the constraints
ř

jPS xij ď 1 and
ř

iPB xij ď 1.

– Dual problem:

min
ui ,vjě0

ÿ

iPB
ui `

ÿ

jPS
vj subject to ui ` vj ě αij @pi , jq P B ˆ S (‹‹)

– The Lagrangean multipliers of (‹‹) are given by x , the solution to (‹)
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Efficiency and the core

‚ Theorem (Shapley and Shubik, 1971): For every efficient matching x , there exists a core

assignment pu, vq such that
ř

i ui `
ř

j vj “
ř

i,j αijxij . Likewise, every core assignment is

supported by an efficient matching.

‚ Sketch of proof:

– By duality, the value of the objective function at the optimal solution in both the primal (‹) and the

dual (‹‹) is the same.

– That is, for every efficient matching x there exists a core assignment pu, vq such that

ÿ

iPB
ui `

ÿ

jPS
vj “

ÿ

iPB,jPS
xijαij .

– Finally, note that for the same reason every feasible pu1, v 1q in the dual (i.e., any core assignment),

must be supported by an efficient matching.
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Efficiency and the core

‚ Remark: The complementary slackness conditions of the primal problem (‹) imply that there

exists an efficient matching x such that

xij P t0, 1u and xij “ 1 ñ ui ` vj “ αij .

‚ No need to worry about “fractional” matchings
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Structure of the core

‚ Notably, the core has also the “opposition of interests” property (i.e., it is a lattice)

‚ Theorem: Let pu, vq and pu1, v 1q be assignments in the core. Let ūi “ maxtui , u1i u and

v j “ mintvj , v 1j u. Then pū, vq is an assignment in the core.

‚ Proof: omitted (read in lecture notes)

‚ Corollary: There exists core assignments pu˚, v˚q and pu˚, v˚q such that for any core assignment

pu, vq, for every i P B and j P S ,

ui̊ ě ui ě u˚i

vj̊ ě vj ě v˚i

‚ Think of pu˚, v˚q and pu˚, v˚q as core assignments with minimal and, respectively maximal, prices.

They are the buyer- and seller-optimal core assignments.
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Overview

‚ Last week

– Two-sided matching: marriage market

– Stability and efficiency: Gale-Shapley algorithm

– Structure of set of stable matchings

– Incentives in the marriage market

– Matching with transferable utility

‚ This week

– The medical match

– A brief history of unraveling and jumping the gun

– The NIMP algorithm and its trial-run
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The medical match

‚ Every year, more than 40,000 medical residents are assigned to more than 30,000 residency

programs in the U.S.

‚ Assignment done through a centralized matching clearinghouse

– National Resident Matching Program (NRMP), a.k.a. “The Match”

‚ The success of this sytem has prompted similar ones in Canda and the U.K.

‚ Key lessons from the history of the NRMP:

(a) the importance of stability as a condition for the survival of an institutional design

(b) real-life markets are complicated: sometimes they work and sometimes they don’t

(c) economists have a great-deal to learn from real-world markets
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History of the NRMP

‚ Up to 1945, market of medical interns was unregulated:

– Recently graduated interns applied and interviewed for positions at hospitals

– Hospitals aimed to attract the most promising candidates

‚ First decades of the 20th century: the market unraveled

‚ In 1945, the Association of American Medical Colleges (AAMC) decided to step in

– 1945–1952: experimented with several rules and regulations

‚ In 1952, they settled on a centralized matching clearinghouse: the NIMP algorithm

‚ This system was seen as a great success. It stayed in place until the mid-1990s.

‚ Prompted by calls for reform, in the mid-1990s, a group of economists led by Alvin Roth,

redesigned certain aspects of the system.

– The main building blocks of the system remain the same as they were in the 1950s
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A history of unraveling

‚ Prior to 1945, hospitals competed in an “arms race” for the best graduates

‚ Hospitals offered binding agreements prior to graduation to lock them into their programs.

‚ Hospitals undercut each other agreements

‚ Their dates became earlier and earlier as years went by

‚ By the 1940s, the market had clearly unraveled

‚ The typical student would sign a binding agreement two years before graduating

‚ Inefficient for students: do not know preferences, not enough information

‚ Inefficient for hospitals: high uncertainty
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Jumping the gun: exploding offers post-1945

‚ On 1945, the AAMC stepped in

‚ They regulated the date at which medical schools released students records

‚ Hospitals responded by making “exploding offfers”: shortly after the deadline, they would make

offers that expired after very few days

‚ Goal: lock in students before another preferred program made them an offer

‚ Students face tough decisions:

– Play it “safe”: could exit the market too soon, a better program might offer later

– “Risk” it: could end up letting go the best offer

– Either way: highly likely students end up matching with a less preferred program while a better one

has an opening for them (unstable outcomes!)
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Reform Towards the NIMP (aka. The Match)

‚ 1845–1950: AAMC experimented with the minimum date at which offers could be made, and the

minimum time hospitals had to give students to decide. Process was very chaotic.

‚ On 1951, AAMC came up with a centralized matching clearinghouse

‚ NIMP = National Intern Matching Program

– Students applied and held interviews with hospitals

– Then, hospitals and students submitted a rankings of each other to the NIMP

– The final allocation was determined through a matching algorithm

‚ On 1951, they did a trial run (aka. NIMP trial-run)

‚ Worked out “well enough,” but there were some complaints

‚ On 1952, they adjusted the NIMP algorithm and used it

‚ Importantly, the system was voluntary
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Redesigning the NRMP

‚ NIMP algorithm stayed in place until the 1990s (high participation rates)

‚ Eventually it became the NRMP

‚ On the 1990s, students called for reform

‚ They argued that the system could be “gamed”

‚ Complaints about how the algorithm allocated couples (which became more common)

‚ In the 1990s, group of economists redesigned some aspects of the system

– But the main building blocks remained in place

– It was noted that the interview process was a key part for the mechanism to work properly (reduces

the number of potential blocking partners of each agent)
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Key lessons

‚ The pre-1952 market failed to deliver stable outcomes

‚ Main strength of NIMP algorithm: stability (unlike trial-run)

‚ Necessary condition for voluntary system to survive test of time: stability

‚ The process through which the institutional design of this market “converged” to a stable

mechanism was long, chaotic, and idiosyncratic.

– Why then and not before or after?

– Was it inevitable? Obvious? By chance? Seems hard to know

‚ Non-economists out there know a lot about how real-life markets actually work

‚ AAMC administrators had been designing NIMP for more than a decade by the time Gale and

Shapley came by in 1962 (A. Roth was born in 1951!)
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One-to-one medical match

‚ Same setup as marriage market, but with different labels

‚ pS ,H,ěq = one-to-one medical match

– sj P S “ students

– hi P H “ hospitals

– ě : linear orders, one for each agent

‚ Note 1: Read Chapters 5 and 6 of Roth and Sotomayor (1990) to see how to extend this to

many-to-one (one hospital hires several students)

‚ Note 2: We will see some many-to-one matching next week in school choice
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NIMP trial-run

‚ Students submit ranking of hospitals

‚ Hospitals rank students into 5 groups in order of preference: rank 1, . . . , rank 5.

‚ Proceed in stages:

– 1:1 stage. Students and hospitals are matched if they give each other a rank of 1.

– 1:2 stage. The remaining students and hospitals are matched if the student has ranked the hospital 1

and the hospital has ranked the student 2.

– 2:1 stage. Among the remaining students and hospitals, match students who ranked hospitals 2, and

hospitals who ranked students 1.

– 2:2 stage. . . . , followed by 1:3 stage, and so forth.
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NIMP trial-run

‚ Proposition: The NIMP trial-run algorithm is not stable, nor strategy-proof for students.

‚ Proof:

– Consider 4-by-4 example:

s1 : h1, h2, h3 s2 : h2, h3, h1 s3 : h1, h3, h2

h1 : s2, s3, s1 h2 : s1, s2, s3 h3 : s3, s2, s1

– 1:1 stage: no matches

– 1:2 stage: match ps2, h2q and ps3, h1q
– Finally, match ps1, h3q
– First, note that s1 and h2 form a blocking pair Ñ not stable

– Second, if s1 ranks h2 as their top choice (above h1), ps1, h2q matched in the 1:1 stage.

– Hence, s1 has incentives to misreport Ñ not strategy-proof for students
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NIMP algorithm

‚ Students/hospitals submit ranking of hospitals/students (indicating unacceptable ones)

‚ From the list of sj (resp. hi ), delete hospitals (resp. students) who find sj (resp. hi ) unacceptable

‚ No one is tentatively matched. Proceed in stages:

– 1:1 step. Check if there are students and hospitals who rank each other as their top choice and are

not tentatively matched. If no matches found, proceed to the 2:1 step. If found, proceed to

tentative-assignment-and-update phase.

– k:1 step. Check if there are students and hospitals such that: the student ranks the hospital as their

k-th choice, the hospital ranks the student as their top choice, and they are not tentatively matched.

If no matches found, proceed to the k+1:1 step. If found, proceed to the

tentative-assignment-and-update phase.
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NIMP algorithm (cont’d)

‚ Students/hospitals submit ranking of hospitals/students (indicating unacceptable ones)

‚ From the list of sj (resp. hi ), delete hospitals (resp. students) who find sj (resp. hi ) unacceptable

‚ No one is tentatively matched. Proceed in stages:

– Tentative-assignment-and-update phase. Assume algorithm entered phase from the k:1 step. Assign

tentatively all k:1 matches. New matches replace previous ones. Update the rankings as follows:

- From the ranking of student sj , delete hi if it is ranked lower than the current match of sj . (If sj is

tentatively matched to their k-th choice, their ranking now only includes their first k choices.)

- From the ranking of hospital hi , delete sj if hi was just deleted from the ranking of sj . (List of hi only

includes students who have not been tentatively assigned to a hospital they prefer over hi .)

- After updating the ranking lists, return to the 1:1 step.

– Terminate the algorithm when no new tentative matches can be found, at which point the current

tentative matches become final.
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Example: NIMP and Gale-Shapley

1

2

3

4

4 3

2 3

2 1 4 3

1 2 3 4
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Example: NIMP and Gale-Shapley

1

2

3

4

4 3

2 3

2 1 4 3

1 2 3 4

FIRST STEP: 
Remove those 
who find me 
unacceptable
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Example: NIMP and Gale-Shapley

1

2

3

4

4 3

2 3

2 4 3

1 2 4 1:1 step
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Example: NIMP and Gale-Shapley

1

2

3

4

4 3

2 3

2 4 3

1 2 4

Update
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Example: NIMP and Gale-Shapley

1

2

3

4

4 3

2 3

2 4 3

1 1:1 step
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Example: NIMP and Gale-Shapley

1

2

3

4

4 3

2 3

2 4 3

1

Update
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Example: NIMP and Gale-Shapley

1

2

3

4

4 3

2

2 4 3

1 1:1 step

NO MATCHES
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Example: NIMP and Gale-Shapley

1

2

3

4

4 3

2

2 4 3

1

2:1 step
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Example: NIMP and Gale-Shapley

1

2

3

4

4 3

2

2 4 3

1

Update
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Example: NIMP and Gale-Shapley

1

2

3

4

4 3

2

2 4

1 1:1 step

NO MATCHES
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Example: NIMP and Gale-Shapley

1

2

3

4

4 3

2

2 4

1

2:1 step
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Example: NIMP and Gale-Shapley

1

2

3

4

FINAL 
MATCHING
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Example: NIMP and Gale-Shapley

1

2

3

4

4 3

2 3

2 1 4 3

1 2 3 4

1 2 3 4

1

2

3

4

NIMP

Hospital-proposing 
Gale-Shapley
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Example: NIMP and Gale-Shapley

1

2

3

4

4 3

2 3

2 1 4 3

1 2 3 4

1 2 3 4

1

2

3

4

NIMP

Hospital-proposing 
Gale-Shapley
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Example: NIMP and Gale-Shapley

1

2

3

4

4 3

2 3

2 1 4 3

1 2 3 4

1 2 3 4

1

2

3

4

NIMP

Hospital-proposing 
Gale-Shapley
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Example: NIMP and Gale-Shapley

1

2

3

4

4 3

2 3

2 1 4 3

1 2 3 4

1 2 3 4

1

2

3

4

NIMP

Hospital-proposing 
Gale-Shapley
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Example: NIMP and Gale-Shapley

1
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3
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4 3
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2 1 4 3

1 2 3 4
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Example: NIMP and Gale-Shapley

1
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2 1 4 3
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Example: NIMP and Gale-Shapley
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Example: NIMP and Gale-Shapley

1

2

3
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4 3

2 3

2 1 4 3

1 2 3 4
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NIMP

Hospital-proposing 
Gale-Shapley
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Example: NIMP and Gale-Shapley

1 2 3 4

1

2

3

4

NIMP
Hospital-proposing 

Gale-Shapley
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Example: NIMP and Gale-Shapley

1 2 3 4

1

2

3

4

NIMP
Hospital-proposing 

Gale-Shapley

THEY ARE 
EQUiVALENT!
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NIMP = Hospital-proposing Gale-Shapley

‚ Theorem: The NIMP algorithm and the hospital-proposing Gale-Shapley algorithm are equivalent

(they always generate the same matching).

‚ Proof: Try it as an exercise!

‚ Exercise: show with an example that the first step of the NIMP algorithm (removing partners who

do not find me acceptable) is crucial. Give an example in which the algorithm generates a

non-stable outcome when skipping the first step.
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Overview

‚ Last week

– The medical match

– A brief history of unraveling and jumping the gun

– The NIMP algorithm and its trial-run

‚ This week

– School choice

– The Boston mechanism

– DA and Pareto Efficiency

– The school choice TTC
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School choice

‚ Assign K-12 public school seats to students

‚ Typically, assign them according to location. But this is unfair (rich people can move, while poor

cannot)

‚ Since a couple of decades ago, centralized allocation mechanisms: students are allowed to express

their preferences for schools

‚ By nature, there are no equilibrium prices (tuition) in public school systems

‚ Literature started with Abdulkadiroğlu and Sönmez (2003, AER), “School Choice: A Mechanism

Design Approach”

– Identified problems in existing allocation mechanisms

– Proposed fixes based on matching theory
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School choice

‚ pI ,S ,Q,ąI ,ąSq “ school choice problem

– I “ students

– S “ schools

– Q “ pqsqsPS capacity vector, with qs P N (how many seats in school s)

– ąI “ pąi qiPI students preferences with ąi P PpS YHq
– ąS “ pąsqsPS school priorities with ąs P PpI q

‚ Matching is a function µ : I Ñ S Y tHu such that |µ´1psq| ď qs for every s P S .

– µ´1psq “ set of students matched to school s

‚ Set of all matchings is MpI ,S ,Qq.
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Key properties

‚ Matching µ PMpI ,S ,Qq eliminates justified envy if there is no pair pi , sq P I ˆ S such that

i ąs j and s ąi µpiq for some student j with µpjq “ s.

– Note resemblance of justified envy with stability

– Different interpretation: students with justified envy may sue the school system

‚ Matching µ PMpI ,S ,Qq is non-wasteful if, for every pi , sq P I ˆ S , s ąi µpiq implies

|µ´1psq| “ qs .

– Same idea as blocking partner who remains single, but interpretation is different

– It is a “waste” for a seat to be unassigned while a student wants it

‚ Mechanism φ : PpS Y tHuq|I | ÑMpI ,S ,Qq is strategy-proof if every student finds it optimal to

report their true preferences: for every i P I and every profile pąi q P PpS Y tHuq|I |,

φrpąi ,ą´i qspiq ěi φrpą1,ą´i qspiq for every ą1 P PpS Y tHuq.
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The Boston mechanism

‚ Used to be in place in Boston. Popular and easy to understand.

‚ Algorithm. Every student submits preference ranking, and each school determines priorities over

students (home address, siblings, lottery ticket, etc.)

‚ Step 1: Assign the seats of each school to the students who rank it as their top choice, one at a

time following its priority order. Proceed until either there are no seats left or until there is no

student left who has listed it as their top choice.

‚ Step k: Assign the remaining seats of each school with remaining seats to the students who rank

it as their k-th choice, one at a time following its priority order. Proceed until either there are no

seats left or until there is no student left who has listed it as their k-th choice.

‚ Stop when every student has been assigned or there are no seats left.

‚ Note: mechanism also known as Immediate Acceptance (IA), compare with Gale-Shapley DA
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The Boston mechanism

‚ Major problem with Boston mechanism is that it is not strategy-proof

– It was well-known that it was better to “skip” popular schools in the ranking

– There were parent associations advising parents how to “strategize” optimally

‚ As observed by Glazerman and Meyer (1994):

It may be optimal for some families to be strategic in listing their school choices. For example, if

a parent thinks that their favorite school is oversubscribed and they have a close second favorite,

they may try to avoid ”wasting” their first choice on a very popular school and instead list their

number two school first.

‚ Exercise: provide the simplest example you can think of a school choice problem in which at least

one student has incentives to misreport their true preference.
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The Boston mechanism

‚ The Boston mechanism was highly criticized for giving an advantage to parents who were more

familiar with the system, or that had the resources to “strategize” correctly.

‚ It reintroduced unfairness to a system which main objective was to eliminate it.

‚ Exercise: does the Boston mechanism eliminate justified envy?

‚ Exercise: is the Boston mechanism non-wasteful?
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Deferred Acceptance (DA) and Pareto efficiency

‚ An alternative to the Boston mechanism is Gale and Shapley’s DA (student-proposing):

– At every step, a school s is tentatively matched to the best qs students who have proposed or who

were tentatively matched to it in the previous round, and rejects the rest.

‚ We know that DA:

– eliminates justified envy

– is non-wasteful

– is strategy-proof for students

‚ Seems like the ideal mechanism, it was adopted in New York in 2003, and in Boston in 2005.

‚ However, there is a catch!
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Deferred Acceptance (DA) and Pareto efficiency

‚ Student-proposing DA may generate matchings that are not Pareto efficient for students.

– In this market, we have a valid reason for considering one-sided efficiency: can the students trade

schools amongst themselves so that everyone is better off?

‚ Example: I “ t1, 2, 3u and S “ tA,B,Cu with qs “ 1 for every school, preferences and priorities

given by:
ą1: B,A,C ą2: A,B,C ą3: A,B,C

ąA: 1, 3, 2 ąB : 2, 1, 3 ąC : 2, 1, 3

‚ Student-proposing DA matches p1,Aq, p2,Bq, and p3,C q
‚ Note that student 3 is matched to C in every stable matching

‚ This matching is Pareto dominated (amongst students) if students 1 and 2 trade schools.

‚ Stability forces students 1 and 2 to “share” schools inefficiently
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Deferred Acceptance (DA) and Pareto efficiency

‚ Matchings that are not Pareto efficient amongst students are hard to justify in practice.

‚ Introduce new notion of efficiency

‚ A mechanism φ Pareto dominates a mechanism ψ if, for all profile of preferences, φ results in a

matching that all students prefer to the matching obtained by ψ, and for some profile ěI of

students’ preferences some of the students are strictly better off.

‚ Question: can we do better than DA in terms of efficiency without sacrificing any of its desirable

properties?

‚ Answer: No!
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Deferred Acceptance (DA) and Pareto efficiency

‚ Proposition: If φ is a strategy-proof (for students) and non-wasteful mechanism, then there is no

strategy-proof mechanism that Pareto dominates φ.

‚ Proof:

– φ “ strategy-proof for students and non-wasteful. Two steps.

– Step 1: Fix a preference profile ąI P PpS Y tHuq|I |.
– Consider matching ν that Pareto dominates µ “ φpąI q: νpiq ěi µpiq for all i .

– We show that the set of matched agents is the same under µ and ν

– First, i matched under µ ñ i matched under ν

- Otherwise, i would report s “ µpiq as unacceptable in φ
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Deferred Acceptance (DA) and Pareto efficiency

‚ Proposition: If φ is a strategy-proof (for students) and non-wasteful mechanism, then there is no

strategy-proof mechanism that Pareto dominates φ.

‚ Proof:

– Second, assume i is matched under ν but not under µ: νpiq ąi H “ µpiq
- φ non-wasteful ñ school νpiq is full under µ

- ñ D i1 with µpi1q “ νpiq and νpi1q is preferred by i1 than µpi1q (preference are strict)

- φ non-wasteful ñ school νpi1q is full under µ

- ñ D i2 with µpi2q “ νpi1q and νpi2q is preferred by i2 than µpi2q (preference are strict)

- keep going on until run out of people, at some point reach a contradiction

– Then, set of agents matched in µ and ν are the same
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Deferred Acceptance (DA) and Pareto efficiency

‚ Proposition: If φ is a strategy-proof (for students) and non-wasteful mechanism, then there is no

strategy-proof mechanism that Pareto dominates φ.

‚ Proof:

– Step 2. Suppose D mechanism ψ that Pareto dominates φ

– We show that ψ is not strategy-proof for students

– D profile ąI s.th. ψrąI spiq ěi φrąI spiq for all i , strict for some j

– Let s “ ψrąI spjq. Consider that j reports ą1j , where s is the only acceptable school.

– φ-SP ñ φpą1j ,ą´jqpjq “ H (otherwise, j would have incentives to misreport in φ).

– Step 1 ñ the same students must be matched under both φpą1j ,ą´jq and ψpą1j ,ą´jq.
– ñ ψpą1j ,ą´jqpjq “ H.

– ñ ψ is not SP since, when j ’s true preference is ą1j , they would rather lie and report ąj . Q.E.D.
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School choice TTC

‚ Alternative to DA, to obtain Pareto efficient matchings for students: Top-trading Cycle (TTC)

‚ Algorithm. Initially, every seat is empty.

– Students point to their favorite schools. Schools that have remaining seats point to their favorite

students.

– There is at least one cycle, and no cycles overlap.

– Assign students to the school they are pointing to within each cycle (and remove the corresponding

seat from each school that was just assigned a student).

– Remove schools that have no empty seats.

– Repeat until no more students are assigned or there are no seats left.
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School choice TTC

‚ TTC benefits students with a high priority but in a different way:

– It allows students to trade a high priority in one school for a seat in another school.

– Intuition: I am more likely to be in a cycle (and get my current top choice), if I have the highest

priority for more schools

‚ Proposition: The school choice TTC mechanism is strategy-proof for students and Pareto

efficient.

– Prove the Proposition on your own as an exercise (very similar to housing markets)

‚ Exercise: Prove that the school choice TTC is non-wasteful

‚ Question: does the school choice TTC eliminate justified envy?

‚ Answer: No, there is a trade-off between stability (DA) and efficiency (TTC).
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School choice TTC

‚ Example: Same as before: I “ t1, 2, 3u and S “ tA,B,Cu with qs “ 1 for every school,

preferences and priorities given by:

ą1: B,A,C ą2: A,B,C ą3: A,B,C

ąA: 1, 3, 2 ąB : 2, 1, 3 ąC : 2, 1, 3

‚ Student-proposing DA matches p1,Aq, p2,Bq, and p3,C q
‚ TTC matches p1,Bq, p2,Aq, and p3,C q, which Pareto dominates the DA assignment.

– However, this is not the case in general (as we know from the Proposition)

‚ Note that the TTC matching does not eliminate justified envy: 3 envies 2
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School choice TTC

‚ Example: Consider the following preferences:

ą1: B,C ,A ą2: A,B,C ą3: A,B,C

ąA: 1, 3, 2 ąB : 2, 3, 1 ąC : 2, 1, 3

‚ Even though agent 1 ranks A as the worst choice now, they still have the highest priority in A

(which matters for TTC).

‚ Verify that student-proposing DA matches p1,C q, p2,Bq, and p3,Aq.
‚ TTC matches p1,Bq, p2,Aq, and p3,C q.
‚ Agents 1 and 2 prefer to use TTC, while student 3 prefers student-proposing DA.

‚ ñ Trade-off between efficiency and stability
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School choice TTC

‚ In practice, the idea of “trading priorities” is hard to implement.

‚ According to school administrators:

There may be advantages to this approach... It may be argued, however, that certain priorities,

e.g., sibling priority, apply only to students for particular schools and should not be traded away.

The trading mechanism can have the effect of ”diluting” priorities’ impacts, if priorities are to

be ”owned” by the district as opposed to being ”owned” by parents; it shifts the emphasis onto

the priorities and away from the goals the BPS is trying to achieve by granting these priorities

in the first place; and could lead to families believing they can strategize by listing a school they

don’t want in hopes of a trade.
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