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Disclaimer. The bulk of these lecture notes is based on material I first learned
on several classes at Caltech, mainly: Federico Echenique’s SS201c, Leeat Yariv’s
SS211c, and Luciano Pomatto’s Ec117. They also draw from the classic textbook
on two-sided matching by Roth and Sotomayor (1990), and the more recent one
by Haeringer (2017) on market design. The lecture slides of Muriel Niederle and
Nicole Immorlica, both publicly available online, have also been an invaluable re-
source. I have tried to cite original sources and provide additional references when-
ever possible. The notes are work in progress. All errors are my own. Please let me
know if you find anymistakes ormissing citations: a.robinson-cortes@exeter.ac.uk.

� The warning symbol on the left indicates that a subsection could use some work.
At times, I have opted to discuss a reference or result without much detail, rather
than omitting it.
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1 House allocation

Consider the following allocation problem: how to assign a set of distinct objects to
agents with heterogeneous preferences? For concreteness, in what follows we shall
refer to the objects as houses. However, the framework will be general in that it will
apply to any set of objects you may think of besides houses. The main assumption
is that the objects are indivisible.

1.1 Preliminaries: preferences and utility

A binary relationR over a setX is defined as a subset ofX×X . If (x, x′) ∈ R, we say
that x and x′ are related by R or R-related, and write xRx′. Similarly, if (x, x′) /∈ R,
we write not xRx′. Binary relations can be used for a wide range of purposes. For
example, the order “less than or equal to” ≤ defined over the real numbers R is a
binary relation. For our purposes, binary relations will serve us to describe agents’
preferences over houses.

Let I be a finite set of agents andH a finite set of houses. An agent’s preferences
for houses are summarized by their preference relation, which is a binary relation
over H . Denote the preference relation of agent i ∈ I by <i, where h <i h

′ stands
for agent i preferring house h at least as much as they prefer house h′.

Definition 1.1. A binary relation R over a set X is (i) complete if for every x, x′ ∈ X ,
xRx′, x′Rx, or both; (ii) transitive if for every x, x′, x′′ ∈ X , xRx′ and x′Rx′′ imply
xRx′′; (iii) antisymmetric if for every x, x′ ∈ X , xRx′ and x′Rx imply x = x′.

Definition 1.2. A preference relation is a complete and transitive binary relation. The
set of preference relations over a set H is denoted by R(H). A preference relation is said to
be strict if it is antisymmetric. The set of strict preference relations over H , also known as
linear orders, is denoted by P(H).

Requiring agents to have complete preferences amounts to assuming they are
able to compare anypair of houses inH , sayh andh′, and have one of three opinions:
(i) I like house h more than house h′, i.e., h < h′ and not h′ < h; (ii) I like h less than
h′, i.e., h′ < h and not h < h′, or (iii) I am indifferent between them, i.e., h < h′ and
h′ < h. Given <∈ R(H), define the auxiliary binary relations � and ∼ as follows.
For h, h′ ∈ H ,
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• h � h′⇐⇒ h < h′ and not h′ < h;

• h ∼ h′⇐⇒ h < h′ and h′ < h.

Oftentimes,� is referred to as the strict part of< (which in turn is referred to as its
weak counterpart), and ∼ is called the indifference relation.

The transitivity requirement in Definition 1.2 imposes consistency within an
agent’s preferences. It precludes agents from preferring house h1 to h2, and h2 to h3,
while at the same time preferring house h3 to h1. Also, note that strict preferences
rule out indifference. That is, assuming that an agent has a strict preference relation
means that they are able to rank all houses, from their favorite to their least favorite
one, without being indifferent between any of them. Since h < h′ and h 6= h′ if and
only if h � h′ for <∈ P(H), at times we may denote strict preferences simply by �.

Exercise 1.3. Prove that, for <∈ P(H), h < h′ and h 6= h′ if and only if h � h′.

Exercise 1.4. Using the definitions above, for both <∈ R(H) and <∈ P(H), eval-
uate the following1: (1) � is complete; (2) � is transitive; (3) � is antisymmetric;
(4) ∼ is complete; (5) ∼ is transitive; (6) ∼ is antisymmetric. (Note that you must
evaluate a total of 12 statements.)

Besides its intuitive appeal, one of the main advantages of assuming that agents
have complete and transitive preferences is that we can represent them numerically.

Proposition 1.5. A binary relation< overH is a preference relation if and only if it admits
a utility representation, i.e., if there exists a function U : H → R such that:

h < h′ ⇐⇒ U(h) ≥ U(h′) ∀h, h′ ∈ H.

Exercise 1.6. Prove Proposition 1.5.

Note that the interpretation of a utility function is quite limited. In particular,
even though it is tempting to interpret utility differences in terms of “preference
intensity,” this is not correct. That is, the magnitude of the difference U(h)− U(h′)

does not contain any information regarding the preference over h and h′. Only its
sign matters: U(h) − U(h′) > 0 ⇔ h � h′; U(h) − U(h′) < 0 ⇔ h′ � h, and

1To “evaluate” a statement means to state whether it is true, in which case a proof must be pro-
vided, or false, in which case a counterexample must be provided.
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U(h) = U(h′) ⇔ h ∼ h′. This is because, by definition, preference relations are
ordinal; they do not contain any cardinal information about an agent’s preferences.

Exercise 1.7. Let < be a preference relation over H , and assume that U is a utility
function that represents <. Show that V : H → R also represents < if there exists
an increasing function f : R→ R such that V = f ◦ U .

Exercise 1.8. In the real world, it is natural to think that the more someone likes a
house, the more they would be willing to pay for it. In this sense, the willingness
to pay for an object is a cardinal measure of its desirability. Let WTP (h) denote
the willingness to pay for house h ∈ H . On the one hand,WTP keeps the ordinal
“flavor” of a utility function: an agent “’likes” h at least as house h′ if WTP (h) ≥
WTP (h′). On the other hand, we could also measure “preference intensity” by
comparing the differences in WTP: say that an agent “likes much more” house h
to h′ than what they “like” house h′ compared to h′′ if WTP (h) − WTP (h′) >

WTP (h′)−WTP (h′′).Howwould you alter our current framework, stated in terms
of (ordinal) preferences relations, to incorporate a cardinal desirability measure
such as the WTP? In particular, what would you add? What are the advantages
and disadvantages of modeling the “intensity” of preferences?

1.2 House allocation problems

Ahouse-allocationproblem is definedby a tuple (I,H, (<i)i∈I), where I is a nonempty
finite set of agents,H a nonempty finite set of houses, and (<i)i∈I a preference pro-
file. Assume that each agent has strict preferences, <i ∈ P(H) for every i ∈ I . An
allocation of houses is described by a matching.

Definition 1.9. A matching is a function µ : I ∪H → I ∪H ∪ {∅} such that, for every
i ∈ I and h ∈ H , (i) µ(i) ∈ H ∪ {∅}; (ii) µ(h) ∈ I ∪ {∅}; (iii) µ(i) = h if and only if
µ(h) = i. Denote the set of all matchings between agents and houses byM(I,H).

A matching specifies which agent is assigned to which house. If µ(i) = h then
house h is assigned to agent i, which is equivalent to µ(h) = i. Note that we allow
for agents to remain unmatched by “matching” them with the empty set µ(i) = ∅.
Similarly, we allow for houses to remain unassigned, which we specify by µ(h) = ∅.
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Definition 1.10. Given a preference profile (<i)i∈I , a matching µ is Pareto efficient if
there is no other matching ν ∈ M(I,H) such that ν(i) <i µ(i) for all i ∈ I and ν(j) �j
µ(j) for at least one j ∈ I .

Pareto efficiency is perhaps the weakest notion of “optimality” of a matching.
If a matching is not Pareto efficient, it means that we can find another matching in
which everyone is at least as well off and at least someone is strictly better off. In this
sense, it seems hard to justify that a matching is desirable if it is not Pareto efficient.

Example 1.11. Let I = {1, 2, 3, 4} and H = {a, b, c, d}. The preferences are given by:

�1: b, c, d, a; �2: a, b, c, d; �3: a, c, d, b; �4: a, d, b, c.

That is to say, agent 1 prefers house b over all the houses, followed by house c, house d, etc.
Consider the matching µ given by:

µ(1) = d, µ(2) = a, µ(3) = c, µ(4) = b.

Is matching µ Pareto efficient? No, since agents 1 and 4 can trade their houses and be
(strictly) better off. In this sense, we say that the resulting matching µ′ Pareto dominates
matching µ, where µ′ is given by µ′(1) = b, µ′(2) = a, µ′(3) = c, and µ′(4) = d. Question:
is matching µ′ Pareto efficient?

1.3 Review of mechanism design

An environment is a pair (I,X), where I is a finite set of agents with |I| = n, and
X a finite set of possible outcomes, e.g., X = M(I,H). Each agent i ∈ I ranks
outcomes in X according to the linear order <i ∈ P(X). A social choice function
is a function f : P(X)n → X , mapping preference profiles (<i)i∈I to outcomes.
A mechanism is a tuple (M1, . . . ,Mn, g), in which each Mi is a nonempty set of
messages for agent i ∈ I , and g : ×i∈IMi → X maps profiles of messages to out-
comes. Given a mechanism (M1, . . . ,Mn, g), a strategy for an agent i is a function
si : P(X)→Mi, mapping preferences to messages.

A strategy profile is a collection of strategies, one for each player, which we
denote as

s = (s1, . . . , sn) = (si, s−i).
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A strategy si is a dominant strategy for agent i if, for all <i ∈ P(X),

g(si(<i),m−i) <i g(m′i,m−i)

for allm′i ∈Mi and allm−i ∈M−i. That is, a strategy is dominant if an agent always
finds it optimal to choose the message prescribed by the strategy, whatever their
preferences and the messages chosen by others. A strategy profile s = (s1, . . . , sn)

is a dominant strategy equilibrium if si is a dominant strategy for every i ∈ I .

A social choice function f is dominant strategy implementable if there exists a
mechanism (M1, . . . ,Mn, g) with a dominant strategy equilibrium s = (s1, . . . , sn)

such that, for every preference profile (<i)i∈I ∈ P(X)n, the mechanism results in
the same outcome as the social choice function, i.e.,

g[(si(<i))i∈I ] = f [(<i)i∈I ].

Given a social choice function f , the direct revelation mechanism associated
with f is defined by setting each Mi = P(X) and g = f . That is, in a direct reve-
lation mechanisms agents report preferences and the mechanism chooses whatever
outcome is dictated by the social choice function.

Definition 1.12. A social choice function f is strategy-proof if the strategy profile in
which everyone reports their true preference, i.e., si(<i) =<i for every i ∈ I , is a dominant
strategy equilibrium in the direct revelation mechanism associated with f . In other words,
f is strategy-proof if, for all <= (<i,<−i) ∈ P(X),

f(<i,<−i) <i f(<′i,<−i),

for all <′i ∈ P(X) and all i ∈ I .

Theorem 1.13 (Revelation Principle). A social choice function is dominant strategy im-
plementable if and only if it is strategy-proof.

The importance of the revelation principle is that it allows us to focus on di-
rect revelation mechanisms when studying the implementability of social choice
functions. Furthermore, the property of strategy-proofness is very intuitive when
thought of in terms of incentives. Simply put, social choice functions (or mecha-
nisms for that matter) are strategy-proof if individuals find it optimal to report their
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true preferences. Strategy-proofmechanisms cannot be “gamed”, or, more precisely,
in strategy-proof mechanisms agents have no incentives to misreport the truth.

When studying house allocationproblems,we shall studydirect revelationmatch-
ing mechanisms of the form φ : P(H)n → M(H, I), where n = |I| is the number
of agents. That is, matching mechanisms map preference profiles to matchings be-
tween agents and houses. We shall say that a mechanism is Pareto efficient if it
always generates a Pareto efficient matching. Similarly, that it is strategy-proof if all
agents always find it profitable to report their true preferences. Denote a profile of
preferences (<i)i∈I ∈ P(H)n simply by (<i).

Definition 1.14. A matching mechanism φ : P(H)n → M(H, I) is Pareto efficient
if, for every preference profile (<i) ∈ P(H)n, the matching φ[(<i)] is Pareto efficient. It is
strategy-proof if, for every preference profile (<i) ∈ P(H)n and every agent i ∈ I ,

φ[(<i,<−i)](i) <i φ[(<′,<−i)](i) for every <′∈ P(H).

Notice that while both Pareto efficiency and strategy-proofness are properties of
a mechanism, the former does not rely on any assumption on agents’ behavior. That
is, to determine whether a mechanism is Pareto efficiency or not, we do not need to
assume that agents are optimizing. By contrast, the notion of strategy-proofness
relies on the notion of optimizing agents. To illustrate, consider the following ex-
ample.

Example 1.15. Consider the follow mechanism. Order the agents according to some ar-
bitrary order: i1, i2, etc. Given a preference profile (<i), assign each agent to the house
they rank as their second most preferred house. If two agents rank the same house as their
second choice, assign it to the agent who goes first in the order. Assign unassigned agents
to their third choice and break ties in the same way. Continue in the same way (with the
fourth choice, and so on) until all agents or all houses have been assigned. Question: is this
mechanism Pareto efficient?

The mechanism is clearly not Pareto efficient. To see this formally, consider a simple
counterexample: two agents, i1 and i2, two houses, h and h′, and preferences given by
h �i1 h′ and h′ �i2 h. Under this profile of preferences, the mechanism assign the matching
µ(i1) = h′ and µ(i2) = h, which is clearly not Pareto efficient since both agents would be
better off by trading houses.
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A keen observer might object by noting that agent i1 would clearly not report their true
preferences to the mechanism in this setting. Given that the other agent is reporting h′ �i2
h, i1 could be assigned to their top choice by reporting the alternative preference relation:
h′ �′i1 h. In such case, the mechanism would assign a matching that is Pareto efficient
under the true preference profile, the one given by µ′(i1) = h and µ′(i2) = h′. However,
while this argument shows that the mechanism is not strategy-proof (since i1 would rather
lie and misreport their preferences), it is not the correct way to check whether the mechanism
is Pareto efficient or not.

The definition of Pareto efficiency for a matching (see Definition 1.10) takes a preference
profile as given, and Definition 1.14 states that a mechanism is Pareto efficient if its output
is Pareto efficient at every preference profile. This means that to determine whether a mech-
anism is Pareto efficient or not, we take the preference profile as given, and do not consider
whether it is the “true” one. Pareto efficiency is a notion that does not depend on agents
behavior. Contrast this with the definition of strategy-proofness, which explicitly requires
comparing the outcomes of a mechanism across distinct preference profiles, one of which is
assumed to be the “true” one.

Exercise 1.16. Consider the samemechanism as in Example 1.15 with the difference
that agents are assigned their top choice (ties are broken in the sameway, according
to the predetermined order, and assigning agents to their next choices). Evaluate
whether this mechanism is (i) Pareto efficient and (ii) strategy-proof.

1.4 Serial dictatorship

The question we tackle now is whether Pareto efficient matchings exist in house-
allocation problems, and, if so, how to find them. To do so, we introduce our first
allocationmechanism,which takes the formof an algorithm. Define apriority order
of agents as a one-to-one and onto function π : {1, . . . , n} → I , where π(k) denotes
the agent in the k-th spot.

Algorithm 1.17 (Serial Dictatorship). Given a preference profile (<i)i∈I ∈ P(H)n and
a priority order π, proceed in steps as follows. Initially, all houses are available.

• In the k-th step, assign agent π(k) to their top choice from the set of available houses.
Remove the newly assigned house from the set of available houses. Proceed until every
agent has been assigned to a house or there are no more available houses.
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In otherwords, the Serial Dictatorship (SD) algorithm assigns the agentwith the
highest priority to their favorite house, the agent with the second-highest priority to
their favorite house among the remaining ones, and so on, until there is no house left
or all agents have been assigned to a house. Clearly, the algorithm is not “fair” in that
it favors agents with higher priority. A common practice to circumvent this issue is
to assign priorities randomly. We shall study this “random” version later on inmore
detail. Nonetheless, the most attractive feature of SD is that it always generates a
matching that is Pareto efficient. And not only that, it actually characterizes the set
of Pareto efficient matchings.

Proposition 1.18. Amatching µ is Pareto efficient if and only if there exists a priority order
π such that µ is the matching generated by the Serial Dictatorship algorithm under π.

Proof. (⇐) First we show that the outcome of SD is Pareto efficient. Proceed by
contradiction. Let µ ∈ M(I,H) be the outcome of SD, and assume there exists
ν ∈ M(I,H) such that ν(i) <i µ(i) for all i ∈ I and ν(j) �j µ(j) for some j ∈ I .
To simplify notation, wlog, assume π(i) = i so that agent k chooses in the k-th step.
Since agent 1 is getting their top choice under µ, ν(1) = µ(1). Now consider agent
2. For a moment, suppose that ν(2) �2 µ(2). This could only happen if house ν(2)

was not available in the second round for agent 2, i.e., if ν(2) = µ(1). But this would
be a contradiction since µ(1) = ν(1); hence, ν(2) = µ(2). The proof then follows
by induction showing that ν(k) = µ(k) for every k ≥ 3 in the same fashion. And,
hence, we reach a contradiction, implying that µmust be Pareto efficient.

(⇒) Let µ be a Pareto efficient matching. To show that µ is the outcome of a SD
for some priority order π, first, we claim that under µ some agent must be getting
their top choice. Suppose not. Then let each agent point to their top choice and let
each house point to its owner under µ. This must lead to a cycle since the number of
agents is finite (why?). Move every agent in the cycle to the house they are pointing
to. This new allocation Pareto dominates µ, which is a contradiction. Hence, order
them ≥ 1 agents that are getting their top choice in µ as π(1), π(2), . . . , π(m). Repeat
the same argument with the remaining n − m agents and the houses that are not
owned by any of the firstm agents. Continue in the same fashion until every agent
has been assigned a priority order. Note that, by construction, µ is the resulting
matching of the SD under π. Q.E.D.
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Example 1.19. Consider the same house-allocation problem as in Example 1.11. Let us
compute the outcome of SD with the priority order π(i) = i for every i = 1, . . . , 4.

1. In the first step, agent 1 is assigned to house b.

2. In the second step, agent 2 to house a.

3. In the third step, agent 3 to house c (since house a is no longer available).

4. In the final step, agent 4 is assigned to house d (since house a is no longer available).

Note that the resulting matching is µ′ as described in Example 1.11. Therefore, by Proposi-
tion 1.18, we conclude that µ′ is Pareto efficient.

Exercise 1.20. HowmanyPareto efficientmatchings are there in the house allocation
problem in Example 1.11? How many priority orders are there?

Exercise 1.21. Let |I| = |H| = n. A preference profile (<i)i∈I is “exact” if the num-
ber of Pareto efficient matchings under (<i)i∈I is the same as the number of priority
orders on I . How many “exact” preference profiles are there in P(H)n?

Exercise 1.22. Let |I| = |H| = n. How many preference profiles with a unique
Pareto efficient matching are there in P(H)n?

According to Proposition 1.18, SD always generates matchings that are Pareto
efficient. However, the proposition assumes that we know the preferences of the
agents; otherwise, how would we be able to run the algorithm. In real life, an out-
side observer generally does not know the preferences of the participating agents.
Therefore, nowwe tackle the question of whether an agent would voluntarily report
their true preferences when participating in a SD. In other words, is Serial Dictator-
ship strategy-proof?

Proposition 1.23. The Serial Dictatorship mechanism is strategy-proof.

Proof. Fix j ∈ I . Denote a profile of preferences (<i)i∈I simply by (<i). Further-
more, let φ[(<i)] ∈ M(I,H) be the matching generated by SD. Given a preference
profile (<i), let Cj [(<i)] be the set of houses available to j in their turn of the SD-
algorithm. That is, Cj [(<i)] is the set from which j chooses their top choice. Cru-
cially, note that the set Cj [(<i)] depends on the preference of the agents who have
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a higher priority than j (the ones choosing before), but it does not depend on j’s
own preferences. Hence, we may write Cj [(<−j)]. The preferences reported by j
will only affect the house to which they are assigned to from Cj [(<−j)], which im-
plies that the mechanism is strategy-proof since j cannot do better than to report
their true preference. Q.E.D.

Notes

The material in this section is well-known and standard in the literature. For a stan-
dard treatment of preference relations and their use in microeconomics, see Mas-
Colell, Whinston, and Green (1995). For a more thorough decision-theoretic treat-
ment, see Kreps (1988). For a standard treatment on mechanism design, including
the revelation principle, see Diamantaras et al. (2009). For a standard treatment of
the Serial Dictatorship algorithm and house allocation problems, see Chapter 11 of
Haeringer (2017).

Additional exercises

Exercise 1.24. Give 20 examples of real-life allocation problems that can bemodeled
as house-allocation problems.

Exercise 1.25. Give an example of a mechanism for the house-allocation problem
that (i) is not Pareto efficient or strategy-proof; (ii) is Pareto efficient but not strategy-
proof; (iii) is not Pareto efficient but is strategy-proof. Note: for each of cases (i)–(iii)
you need to provide the corresponding proof or counterexample.

Exercise 1.26. Modify the definition of a house allocation problem by allowing each
binary relation <i to be a general preference relation, not necessarily a linear order.

(a) In which of the 20 examples you provided in Exercise 1.24 would it be reason-
able to expect agents to be indifferent among objects? Why?

(b) Howwould youmodify the Serial Dictatorshipmechanism? (Since preferences
might have ties, the mechanism, as described in Algorithm 1.17, is not well
defined).
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(c) Notice that the definition of Pareto Efficiency can be applied, without modifi-
cation, to preference relations. Can you modify the Serial Dictatorship mecha-
nism in such a way that the resulting mechanism is Pareto efficient?

Exercise 1.27. So far, we have assumed that agents only care about the house they
are assigned to; they have no preferences for the houses of other agents. In real
life this may not be the case: someone could like the house they are assigned to
inasmuch it is better (or worse) than the houses assigned to their peers.

(a) In which of the 20 examples you provided in Exercise 1.24 would it be sensible
to assume that agents may have preferences for the houses occupied by other
agents? Why?

(b) Show via counterexample that, in this setting, the Serial Dictatorship mecha-
nism may fail to generate a Pareto efficient matching. Is it strategy-proof?

Exercise 1.28. Can you find a direct matching mechanism φ that is Pareto efficient,
strategy-proof, and different to the Serial Dictatorship mechanism? Formally, let
φSD be the Serial Dictatorship mechanism. There must exist a profile of preferences
(<a) such that the two matchings φ[(<a)] and φSD[(<a)] are different.
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2 Housing market

Ahousingmarket is the same as a house-allocation problemwith the difference that
each agent is assumed to own a house initially. For simplicity, assume |I| = |H| = n.
Label the houses in H as h1, h2, . . . , hn so that hi is the house owned by agent i ∈ I
at the outset.2 This model allows us to formalize the basic idea of an exchange
economy. That is, the question is how to mediate a voluntary exchange of houses
among agents in which everyone is made better off. The next two examples show
that, even though it always generates Pareto efficient outcomes, Serial Dictatorship
fails to deliver sensible outcomes in the presence of property rights

Example 2.1. Consider the same setup as in Example 1.11 with the difference that each
agent owns a house initially. Recall, I = {1, 2, 3, 4} and H = {a, b, c, d}, with preferences
given by:

�1: b, c, d, a; �2: a, b, c, d; �3: a, c, d, b; �4: a, d, b, c,

where we have underlined the house initially owned by each agent. That is, agent 1 owns
house a, agent 2 owns house b, and so on. Note that the initial allocation is in itself a
matching. In this case, it is not Pareto efficient since agents 1 and 2 would be strictly better
off by exchanging their houses. That is, agent 1 would rather have b instead of a, and agent
2 house a instead of b. From Example 1.19, we know that the resulting matching is Pareto
efficient (since it is the outcome of SD with π(i) = i for i = 1, . . . , 4.).

However, running SD might not always generate sensible outcomes. Consider the pri-
ority order π = {3, 1, 2, 4}. It can easily be verified that running SS with π results in the
following matching:

µ(1) = b, µ(2) = c, µ(3) = a, µ(4) = d.

By Proposition 1.18, we know that µ is Pareto efficient. Nonetheless, note that agent 2 has
no incentives to participate in this mechanism since they are left worse off. That is, while
SD assigns house c to agent 2, they would rather stay with house b.

2At times, we shall abuse notation and label agents ik, for k = 1, 2, . . . , n, in which case we denote
the house owned by agent ik simply by hk.
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Example 2.2. Let I = {1, 2, 3} and H = {a, b, c} with preferences given by:

�1: b, c, a; �2: a, b, c; �3: a, b, c.

Consider the matching

µ(1) = c, µ(2) = b, µ(3) = a.

It can easily be verified that µ is Pareto efficient and assigns each agent a house they prefer
at least as much as the one they initially own. Indeed, note that µ is the outcome of SD with
π = {3, 2, 1}. However, note that agents 1 and 2 would be better off by not participating in
the mechanism and trading their initial houses amongst themselves. That is, agent 1 would
rather have house b (in exchange for a) than getting c in µ, and agent 2 would rather have
house a (in exchange for b) than keeping house b in µ.

2.1 Individual rationality and the core

Individual rationality captures the idea of property rights. A matching is individu-
ally rational if it assigns to each agent a house that they find at least as good as the
one they already own.

Definition 2.3. Given a preference profile (<i)i∈I , a matching µ ∈ M(I,H) is individ-
ually rational if µ(i) <i hi for every i ∈ I . A mechanism is individually rational if it
always produces matchings that are individually rational.

Note that in Example 2.1matching µ is not individually rational even though it is
Pareto efficient. Such example illustrates why Pareto efficiency does not assure that
individuals will end upwith a house at least as good as the one they ownwhen they
enter an exchange. The definition of Pareto efficiency does not take into account that
houses are initially owned by agents (while individual rationality does). Neverthe-
less, Example 2.2 shows that individual rationality does not guarantee that groups
of individuals will want to participate in an exchange.

Definition 2.4. A matching µ ∈ M(I,H) is blocked by a group of agents A ⊆ I , also
called a coalition, if there exists another matching ν ∈ M(I,H) such that (i) for all
a ∈ A, ν(a) is initially owned by someone in A, and (ii) ν(a) <a µ(a) for all a ∈ A, and
ν(a) �a µ(a) for some a ∈ A.
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The notion of blocking captures the idea that a group of agents (a.k.a. a coali-
tion) may reject an allocation because they find it mutually beneficial to trade on
the sidelines amongst themselves. Hence, the property of not being blocked is de-
sirable inasmuch as we wish agents to trade voluntarily.

Definition 2.5. The core of a housing market is the set of all matchings that are not blocked
by any coalition.

Proposition 2.6. Every matching in the core is individually rational and Pareto efficient.

Proof. Let µ be a matching in the core. Note that µ must be individually rational,
since otherwise there would exist an agent i ∈ I such that the coalition A = {i}
blocks µ. Similarly, if it were not Pareto efficient, then the coalition A = I would
block µ. Q.E.D.

Proposition 2.6 above shows that the property of being in the core implies indi-
vidual rationality and Pareto efficiency. Furthermore, as Example 2.2 above shows,
it is stronger in the sense that the converse is not true. Intuitively, the core is an
appealing notion when thinking of decentralized exchanges. That is, if agents were
to exchange houses on their own, it is natural to think that the resulting matching
would lie in the core. Otherwise, the agents in a blocking coalition would further
exchange their houses to improve their final allocation. This line of reasoning brings
up the question of whether the core is nonempty. That is, if left to their own devices
to exchange houses, would agents be able to “converge” to an allocation in which
no further exchange is possible?

2.2 Top-trading cycle

In this section we introduce the Top-Trading Cycle (TTC) algorithm, first proposed
by David Gale. As we shall see, TTC will be the key to showing that the core of a
housing market is always nonempty. Furthermore, it will give us a simple way to
compute matchings that are in the core.

Algorithm 2.7 (Top-Trading Cycle). Given a preference profile (<i)i∈I ∈ P(H)n, pro-
ceed in steps as follows. Initially, all agents are unmatched and all houses are available.
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• Consider a directed graph in which unmatched agents and available houses are vertices
(a.k.a. nodes). Each agent points to their favorite available house, and each house
points to their owner.

• Find all cycles in the graph, i.e., chains of houses and agents of the form (hm, im)Mm=1

where each hm points to im, who points to hm+1, and iM points to h1. Assign each
agent within a cycle to the house they are pointing to and remove them from themarket.

• Repeat the above procedure with the remaining agents and their houses until there are
no more houses in the market.

Before moving on, we need to verify that the TTC is a well-defined algorithm,
i.e., that it always generates a well-defined matching in a finite number of steps.
First, note that in every step an agent leaves the market if and only if the house they
originally owned also leaves the market. This is because agents are always in the
same cycle as the house they own. Hence, the set of available houses is the same as
the houses owned by unmatched agents and vice versa. Second, we need to show
that the mechanism does not get “stuck.” That is, we need to prove that (i) we can
always find at least one cycle, and (ii) no two cycles will ever intersect (so that we
can readily assign agents to the houses they are pointing to within a cycle).

Proposition 2.8. Every directed graph formed by agents pointing to a unique house and
houses pointing to a unique agent has at least one cycle, and no two cycles intersect.

Exercise 2.9. Prove Proposition 2.8.

Corollary 2.10. The Top-Trading Cycle algorithm generates a matching in a finite number
of steps.

Exercise 2.11. Explain why Corollary 2.10 follows from Proposition 2.8.

Now thatwe knowTTC always generates awell-definedmatching, we show that
it always generates matchings that are Pareto efficient and individually rational.

Proposition 2.12. The Top-Trading Cycle algorithm generates a matching that is individ-
ually rational and Pareto efficient.

Proof. First, we show Pareto efficiency. The proof is very similar to the one for Serial
Dictatorship (cf. Proposition 1.18). By contradiction, assume there exists amatching
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ν ∈ M(I,H) that Pareto dominates µ, the outcome of TTC. All agents leaving the
market in round 1 of the TTCmechanismobtain their top choice (among all houses);
hence, their assignment in ν must be the same as in µ. Since all agents leaving in
round 1 get their top choices in both µ and ν, agents leaving in round 2 cannot get
in ν, houses that, under µ, were assigned to agents leaving in round 1. Hence, they
must also be getting the same houses under ν and µ. The same argument applies
inductively for every round, yielding a contradiction.

To show that the resulting matching is individually rational it suffices to note
that houses never leave the market prior to their owners. Since agents always leave
the market with their most preferred house among the available ones, which in-
cludes their own house, the house they are assigned to will be at least as preferred
as the one they own. Q.E.D.

Next, we show that the TTC algorithm not only produces Pareto efficient and
individually rational matchings, but also that belong in the core. Furthermore, we
show that the core contains a single matching, which is precisely the one generated
by TTC. Therefore, TTC gives us both a way to prove that the core of a housing
market is always nonempty, and an algorithm to find the unique matching in the
core.

Theorem 2.13 (Shapley and Scarf 1974; Roth and Postlewaite 1977). The core of a
housing market is nonempty and contains a unique matching, the one generated by the Top-
Trading Cycle algorithm.

Proof. Let µ be the matching generated by TTC. Let Ik denote the set of agents who
leave the market in the k-th round of TTC. Note that I1, I2, . . . , IK form a partition
of the set of agents.

First, we show that the matching generated by TTC is in the core. By contra-
diction, assume there exists a coalition A ⊆ I that blocks µ with another matching
ν ∈ M(I,H). Consider the subset of agents in the coalition that are strictly better
of under ν than under µ, i.e., let j ∈ B if and only if j ∈ A and ν(j) �j µ(j). Let
k∗ be the first round in which an agent in B leaves the market, i.e., k∗ = min{k :

B ∩ Ik 6= ∅}. Let j ∈ B ∩ Ik∗ . Then, under ν, agent j is getting a house, ν(j), that left
the market before round k∗. Denote this round by k∗∗. Then, there is a member of
the coalition, a1 ∈ A, who initially owned house ν(j) and left the market in round
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k∗∗. Furthermore, a1 is not in B, i.e., ν(a1) = µ(a1). In round k∗∗, a1 belongs to a
cycle of the form:

a1 → ha2 → a2 → · · · → am → ha1 .

The key of this part of the proof is to show that agents a2, . . . , am are also part of the
coalition A, and are not in B (the same as a1), which implies that everyone leaving
themarket in round k∗∗ is getting the same house under µ and ν. In particular, am is
getting ha1 , which is the house originally owned by a1, i.e., ν(j), a contradiction. To
show this, note that ν(a1) = µ(a1) implies that ha2 = ν(a1), so a2 is also a member
of the coalition (since a1 is getting their house in ν). Following the same reasoning,
ha3 = ν(a2), implying that a3 is also a member of the coalition, and so on and so
forth.

To conclude the proof of the Theorem, we need to show that there is no other
matching in the core besides µ. By contradiction, assume there exists ν in the core
such that µ 6= ν. Let i be the first agent who leaves the market in TTC with µ(i) 6=
ν(i). Wlog, assume i ∈ Ik. Hence, every agent in I1, . . . , Ik−1 gets the same house
under µ and ν. This implies that, under ν, every agent in Ik is getting a house of an
agent who leaves on k or afterwards. Since, under µ, agent i is getting their favorite
among all these houses and µ(i) 6= ν(i), ν makes agent i worse off. However, this
would imply that agents in Ik can form a coalition and block ν with µ, which is a
contradiction. Q.E.D.

Next, we show that TTC is also a strategy-proof mechanism. That is, agents have
no incentives to misreport their preferences when their house is assigned via TTC.
Therefore, mediating exchanges via TTC guarantees that: (i) the resulting alloca-
tion will be Pareto efficient, and (ii) agents will have incentives to participate in the
mechanism and report their true preferences.

Theorem 2.14 (Roth 1982). The Top-Trading Cycle mechanism is strategy-proof.

To formally prove Theorem 2.14, we require the following lemma. Intuitively,
the lemma shows that agents cannot affect the cycles leaving themarket before them
by misreporting their preferences.

Lemma 2.15. Fix an agent i and a profile of preferences <−i for the other agents. Consider
two preference relations for i, <i and <′i. Let k and k′ be the rounds in the TTC at which
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agent i leaves the market when reporting <i and <′i, respectively. At round min{k, k′}, the
houses and agents remaining in the market are the same under the two preferences.

Proof. The key to show this lemma is to note that whether i reports <i or <′i does
not affect any of the cycles formed before i leaves the market. Indeed, wlog, assume
k′ ≥ k > 1, so that there is at least one round before i leaves the market when
reporting <i. The cycle formed in round 1 depends on the preferences reported by
other agents, which are fixed in<−i. Even if i points to a house in the cycle, the only
way for i to form part of the cycle is for someone in the cycle to point to the house
owned by i, which does not occur (otherwise i would be in the cycle and would
leave in round 1). Therefore, whatever preferences i reports,<i or<′i, at the start of
round k, since the set of cycles leaving the market in prior rounds is the same, the
set of remaining houses and agents is also the same. Q.E.D.

Proof of Theorem 2.14. Consider an agent i with true preferences <i, a fixed profile
<−i for other agents, and alternative preferences<′i for i. Let k and k′ be the rounds
in TTC at which i leaves the market when reporting <i and <′i, respectively. Con-
sider two cases.

First, assume k ≥ k′, i.e., the case in which iwould leave the market at the same
time or before by misreporting <′i. At the beginning of round k′, by Lemma 2.15,
the set of agents and houses in the market is the same under both <i and <′i. Note
that under<′i, agent i leaves the market with some house h′, which is part of a cycle:

h′ = hi1 → i1 → hi2 → i2 → hi3 → · · · → hi → i,

in which i1, i2, . . . are all pointing to their favorite houses, under <−i. The key is to
note that the chain (h′, i1, hi2 , i2, hi3 , . . . , hi)will remain in themarket until i chooses
to close off the cycle, either by pointing to h′ or by pointing somewhere else that
eventually reaches h′ (or any other house in the cycle). Hence, by reporting the
truth, i will point to their top choice in every subsequent round, and might get
something better, or eventually pick h′ if it is the best remaining house. In other
words, i has no incentives to “close” the cycle before and leave the market with h′.

Second, assume k′ > k, i.e., the case in which i would leave the market after-
wards by misreporting <′i. Note that by reporting the truth, i leaves the market at
time k with the best house among all the remaining ones at the start of round k.
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Since the houses remaining at the start of round k′ is a subset of the ones at round
k, i has no incentive to misreport their preferences to leave afterwards. Q.E.D.

The next Theorem goes further and shows that, actually, TTC is the unique
mechanism that satisfies the above properties. That is, there exists no other mecha-
nism that is also strategy-proof, Pareto efficient and individually rational.

Theorem2.16 (Ma 1994). Amechanism is strategy-proof, Pareto efficient and individually
rational if and only if it is the Top-Trading Cycle mechanism.

Proof. Wewill show that TTC is the unique mechanism satisfying the three proper-
ties: strategy-proofness, Pareto efficiency, and individual rationality. Let τ denote
the TTC mechanism. Let φ be another mechanism. By contradiction, assume that
φ is distinct to τ and also satisfies all three properties. Fix a profile of preferences
(<i) ∈ P(H)n. Let I1 be the set of agents who leave the market in the first round of
TTC. We show that, for all i ∈ I1, both mechanisms assign the same allocation, i.e.,

φ[(<i)](i) = τ [(<i)](i).

Towards a contradiction, assume this is not the case. Since every i ∈ I1 is getting
their top choice in TTC, then theremust exist some i in I1 that is strictly better under
TTC than under φ, i.e., τ [(<i)](i) �i φ[(<i)](i). By individual rationality of φ, we
have τ [(<i)](i) �i φ[(<i)](i) <i hi. Hence, under TTC, agent i is trading with other
agents. Consider the following cycle:

i = i1 → h2 → i2 → h3 → · · · → im → hi → i.

For each agent in the cycle, the house they are pointing to is their top choice under.
Since agent i is strictly better off, the agents in this cycle reach an allocation that
Pareto dominates the original allocation. However, since τ [(<i)](i) �i φ[(<i)](i),
this is not the case under φ. That is, the allocation within the agents in the cycle
under φ admits a reshuffling (or trade) among such agents in which everyone is
better off (and i is strictly better off). The rest of the proof lies in noting that this
cannot be the case while φ satisfies the three properties.

Consider the following alternative preferences for each agent in the cycle, <′ik .
Assume each agent in the cycle reports under <′ik the house they are getting un-
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der TTC as their top choice, i.e., the top choice of ik is hk+1, but they (mis)report
their own house hk as their second top choice. Hence, when reporting <′ik , every
agent in the cycle gets the same allocation under TTC as when they report their true
preferences.

Under φ, when ik reports<′ik , they must get either their top choice hk+1 or their
original house hk (recall that for every agent in the cycle the house they obtain under
φ is between their top choice and their own house).

Since φ is strategy-proof, agent i = i1 must be getting their own house under
φ when reporting <′i; otherwise, they would be getting h2 (their top choice) and
would have incentives to misreport (recall that they get a house strictly worse than
their top choice when reporting their true preferences to φ). That is, φ(<′i,<−i) =

h1. This, in turn, implies that, at the profile

(<′i,<i2 , . . . ,<im−1 ,<
′
im),

agentmmust also be assigned to their own house hm. This is because at <′im agent
im can only be assigned their own house or their top choice, hi, which is being as-
signed to i under <′i. Consequently, at the profile

(<′i,<i2 , . . . ,<
′
im−1

,<′im),

agentm− 1 must also be assigned to their own house. By induction, at the profile

(<′i,<
′
i2 , . . . ,<

′
im−1

,<′im),

everyone in the cycle is assigned to their own house. But then this allocation would
not be Pareto efficient, since the agents could trade to the TTC allocation and be
better off. Hence, we conclude that φ and τ must assign the same allocation to all
agents in I1. The proof follows inductively over the sets of agents who leave the
market in TTC in subsequent rounds. Q.E.D.

2.3 House allocation with existing tenants

Consider a house-allocation problem (I,H, (<i)i∈I) in which a subset of agents IE
are existing tenants, they already own a house, while the rest of the agents IN =
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I \ IE are new applicants, they do not own a house. Let HO = {hi : i ∈ IE}
be the set of occupied houses, where hi denotes the house occupied by i ∈ IE .
Similarly, let HV = H \ HO denote the set of vacant houses. As before, assume
that <i is a linear order for every i ∈ I . A house-allocation problem with existing
tenants is given by the tuple (IE , IN , HO, HV , (<i)i∈I). House-allocation problems
with existing tenants are a generalization of house-allocation problems and housing
markets. Note that a house-allocation problem with existing tenants boils down to
a house-allocation problem if IE = HO = ∅. Similarly, a house-allocation problem
with existing tenants is a housing market if IN = HV = ∅.

House-allocation problemswith existing tenants are commonly faced by univer-
sity administrators who need to assign students to dormitory rooms. While there
are new students who do not have a room, students from upper-years already have
rooms. In what follows, we analyze several mechanisms used in practice to assign
students to dormitories at some U.S. universities.

2.4 Assigning students to dormitories

The first algorithm allows agents who own a house to keep it and opt out of the
mechanism. Then, it runs Serial Dictatorshipwith the remaining agents and houses.
When the priority order is randomly assigned, this mechanism is commonly known
as a “housing lottery.” Housing lotteries have been used to assign undergraduate
housing at Carneige Mellon, Duke, Michigan, Northwestern, and Penn.

Algorithm 2.17 (Serial Dictatorship with Squatting Rights). Let π be a priority order
over agents (which may be random or favor some students over others, e.g., senior students
choose before juniors). Every existing tenant decides whether they want to participate in the
mechanism or keep their current house. Those who do not wish to participate are assigned to
their current houses and leave the market. All the other houses become available, and serial
dictatorship is applied to the remaining houses and agents.

Exercise 2.18. Evaluate the following statements: (1) SerialDictatorshipwith Squat-
ting Rights is Pareto efficient, (2) it is strategy-proof.

The following mechanism runs a Serial Dictatorship for all agents, but gives ex-
isting tenants priority over their own house. Namely, the houses of existing tenants
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are not available for agentswith higher priority, and become available for thosewith
lower priorities only if existing tenants decide to pick another house in their turn.

Algorithm 2.19 (Serial Dictatorship with Waiting List). Let π be a priority order over
agents. Initially, only vacant houses are available. Proceed in steps as follows.

• For each agent, consider the set of currently acceptable houses. For existing ten-
ants, this is the set of available houses that are at least as preferred as their own house,
plus their own house. For new applicants, this is the set of available houses.

• Pick the agent with the highest priority among those who have at least one currently
acceptable house. Assign this agent to their top choice among their currently acceptable
houses. Remove the agent and their newly assigned house from the market.

• If the agent was an existing tenant who was assigned to a house different to the one
they used to own, the house they used to own becomes available.

Exercise 2.20. Evaluate the following statements: (1) Serial Dictatorship withWait-
ing List is Pareto efficient, (2) it is strategy-proof.

The followingmechanism aims to give priority to existing tenants over their own
house inasmuch as it affects agents with higher priorities. This mechanism is used
in one of the residencies at MIT.

Algorithm 2.21 (MIT NH4). Let π be a priority order over agents. The first agent is
tentatively assigned to their top choice among all houses, the next agent is tentatively
assigned to their top choice among the remaining houses, and so on, until all houses have been
assigned or a squatting conflict occurs. A squatting conflict occurs if it is the turn of an
existing tenant, say i ∈ IE , and they find all of the available houses worse than hi, the house
they previously owned. This means that another agent, say i′ ∈ I , called the conflicting
agent, was tentatively assigned to hi previously. At this point, the existing tenant i is
assigned to their own house hi, and they are removed from the market. All the tentative
assignments up to the conflicting agent i′ are erased. Upon this point, the squatting conflict
is resolved, and the algorithm follows in the same fashion, starting with the conflicting agent
i′ again. Every squatting conflict is resolved in the same way.

Exercise 2.22. Evaluate the following statements: (1) MIT NH4 is Pareto efficient,
(2) it is strategy-proof.
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2.5 TTC with existing tenants

Another possibility is to extend the TTC algorithm to a settingwith existing tenants.
The resulting mechanism is called YRMH-IGYT, which stands for “You request my
house—I get your turn.” This algorithm is due to Abdulkadiroğlu and Sönmez
(1999).
Algorithm 2.23 (YRMH-IGYT). Let π be a priority order over agents. Initially, all agents
are unassigned, and the set of available houses is the set of vacant houses. Proceed in steps
as follows.

• Consider a directed graph in which every unassigned agent points to their favorite
house on the market (regardless of whether it is available or not), every available house
on the market points to the unassigned agent with the highest priority, and every
occupied house on the market points to its owner.

• According to Proposition 2.8, there will be at least one cycle and no two cycles will
intersect. Assign every agent in a cycle to the house they are pointing to and remove
them from the market.

• Whenever an existing tenant is assigned to a house while having the highest priority,
the house which they used to occupy becomes available for the next round.

Exercise 2.24. Assume an existing tenant is part of a cycle at some point in the
YRMH-IGYT algorithm. Show that the house owned by the existing tenant will
not be in any cycle (and thus will become available in the next round) if and only if
the existing tenant has the highest priority.
Exercise 2.25. Whydoes theYRMH-IGYTalgorithm is called “You requestmyhouse—
I get your turn”?
Theorem 2.26 (Abdulkadiroğlu and Sönmez 1999). The YRMH-IGYT algorithm is
Pareto efficient, individually rational, and strategy-proof.

Exercise 2.27. Prove Theorem 2.26.

Notes

Shapley and Scarf (1974) first proved that the core of a housingmarket is nonempty,
but their proof did not rely on the Top-Trading Cycle algorithm. David Gale sug-
gested a simpler proof using the TTC. Roth and Postlewaite (1977) proved that the
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core of a housing market contains a unique matching. Strategy-proofness of the
TTC is due to Roth (1982), and its characterization is due to Ma (1994). The dis-
cussion of house-allocation problems with existing tenants draws heavily from Ab-
dulkadiroğlu and Sönmez (1999), who proposed and studied the properties of the
YRMH-IGYT mechanism.
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3 Kidney exchange

Getting a kidney transplant is the preferred treatment for people suffering from
acute kidney failure. Transplanted kidneys come from both deceased and living
donors. However, there is a worldwide shortage of kidneys. In 2016, over 120,000
people were waiting for a lifesaving organ transplant in the U.S. Of these, more than
100,00 were waiting for kidneys. The median patient waits over 3.5 years to receive
a kidney. Of the 17,107 kidney transplants that took place in the U.S. in 2014, 11,570
(67.6%) came from deceased donors and 5,537 (32.4%) came from living donors.
In every country in the world, with the exception of Iran, it is illegal to buy and sell
human kidneys.

Typically, living donors are relatives or closely-related people who are willing to
donate one of their kidneys to a loved one. However, despite the good intentions,
wishing to donate a kidney is sometimes not enough. For a kidney donation to
be successful, the blood and tissue types of the donor and the recipient need to be
compatible. One of the most successful applications of market design to date has
been to increase the supply of kidneys from living donors by performing kidney
exchanges. In a two-way kidney exchange, your donor gives their kidney to patient
k and the donor of patient k gives you theirs. In other words, patients exchange
kidney donors. In a chain of exchanges, there are K pairs of donors and patients.
Donor k ∈ {1, . . . ,K − 1} gives their kidney to patient k + 1, and donor K gives
their kidney to patient 1. The first kidney exchange in the world was made in 1991
in South Korea. In Europe, the first kidney exchange was made in Switzerland in
1999. In the U.S., it was in 2000 in Rhode Island.

In this section, we will apply some of the tools from previous sections to the
problem of how to design kidney exchanges. We will also learn additional tools to
design optimal pairwise exchanges.

3.1 Blood and tissue type compatibility

Humans may have one of four different ABO blood-types: O, A, B, or AB. As far as
blood-types are concerned, everyone can donate or receive a kidney from someone
with the same blood-type, but not necessarily so across blood-types. Figure 1 illus-
trates blood-type compatibilities. People with blood-type O may donate a kidney
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Figure 1: Blood-type compatibility

to anyone, but cannot receive a kidney from someone with a different blood-type.
People with blood-type A or B may donate a kidney to AB’s, but may receive a kid-
ney only from O-types. And people with blood-type AB cannot donate a kidney to
someonewith a distinct blood-type, butmay receive a kidney from anyone. Around
41.2% of the worldwide population has blood-type O, 29.4% has A, 23.12% has B,
and 6.2% has AB. Interestingly, the distribution of ABO blood-types varies across
countries and ethnicities.3

If one person wishes to donate a kidney to another person, in addition to their
blood-types being compatible, there needs to be “tissue type compatibility.” The
tissue type, formally known as HLA type, is a combination of six proteins. As the
mismatch in the HLA types of a donor and patient increases, the likelihood of a
successful transplant decreases. Moreover, donors and patients must pass a “cross-
match” test, through which it is determined if a patient has antibodies against the
HLA in the donor kidney. The presence of antibodies effectively rules out trans-
plantation.

Blood-type and tissue-type compatibilities have beenused in the design ofmech-
anisms to allocate donated kidneys. For instance, when a cadaveric kidney (donated
by a deceased patient) becomes available for transplantation, the priority of each pa-
tient in the waiting list is typically determined by factors including the blood-type,
HLA type-compatibility, time spent on the waiting list, etc. Similarly, the effects of
distinct design choices may depend on the structure of the ABO blood-type com-
patibilities. For example, a proposed allocation rule known as an indirect exchange

3For more details, see: https://en.wikipedia.org/wiki/Blood_type_distribution_by_country.
Blood-types are usually specified along their RhD antigen, which can be negative or positive. While
patients and donors must be compatible in both their ABO type and RhD antigen for blood transfu-
sions, only the ABO blood-type matters for kidney transplants.
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program aims to increase the amount of kidneys by exchanging kidneys from living
donors for priorities in the waiting list. That is, a living donor who is incompatible
with their intended recipient donates their kidney, and, in exchange, their intended
recipient receives a higher priority for the next compatible kidney. However, it has
been observed that such indirect exchange programs can harm type O patients who
have no living donors and are currently in the waiting list.

3.2 Kidneys as houses, tenants as donors

� In its simplest form, kidney exchange may be seen as a direct application of a house
allocation problem with existing tenants by viewing kidneys as “houses.” Incom-
patible patient-donor pairs are existing tenants, each of whom “owns a house.” Pa-
tients who need a kidney and have no donor are “new applicants.” They do not
“own a house” initially. Finally, cadaveric kidneys and kidneys donated from altru-
istic donors are “empty houses.” Patients have a preference ranking over kidneys
whichmay depend on the blood and tissue-type compatibilities, location of the kid-
ney, and any other factor that may affect the probability of a successful transplant,
such as donor age, kidney size, medical history, etc. Importantly, patients may have
heterogeneous preferences over otherwise compatible kidneys.

The one difference between kidney exchange and house allocation with existing
tenants is that the set of cadaveric kidneys is ex-ante unknown. That is, in an indirect
exchange, a patient is given a place in the waiting list, which in essence is a lottery
over kidneys. Roth, Sönmez, and Ünver (2004) analyze a modification to the Top-
Trading Cycle algorithm in which they allow for patients to have preferences over
the set of currently available kidneys and a place in the waiting list, denoted by w.
The difference with including option w in the model is that several patients can be
assigned to a place in the waiting list. Therefore, instead of only having cycles, we
may find w-chains, which are chains in which the last patient is assigned to the
waiting list. In this scenario, a patient may be in multiple w-chains, whereas in
a traditional housing market each agent is in a unique cycle. Therefore, the TTC
algorithm must be adjusted appropriately. Roth, Sönmez, and Ünver (2004) study
the implications of using the TTC with different “chain selection rules.”

In practice, a difficulty of using the TTCmechanism to allocate donated kidneys
is that transplants must be done simultaneously. The reason is because one cannot
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force someone to donate a kidney. To avoid having a donor “backing out” after
their intended recipient has received a kidney, transplants are done at the same
time. Performing simultaneous organ transplants is not an easy logistical task. It is
usually easier and cheaper to carry out exchanges in “small” exchanges or cycles.
In the next section, we analyze the problem of kidney exchange when we restrict to
pairwise exchanges.

3.3 Pairwise kidney exchange

A pairwise kidney exchange problem is a tuple (I,R), where I is a set of n patient-
donor pairs, and R is a compatibility matrix. In particular, R = (rij)i 6=j where
rij = 1 if the pairs i and j are compatible, i.e., the patient in pair i can receive the
kidney of the donor in pair j and vice versa. Amatching is a function µ : I → I such
that µ(i) = j if and only if µ(j) = i and rij = 1. Denote the set of all matchings by
M(I,R). That is, µ specifies a pairwise exchange among compatible patient-donor
pairs in I , where pairs i and j exchange kidneys if µ(i) = j, and pair i does not
participate in the exchange if µ(i) = i. Therefore, for every matching µ ∈ M(I,R),
the set of patients who receive a kidney under µ is given by:

Mµ = {i ∈ I : µ(i) 6= i} .

Definition 3.1. Amatching µ ∈M(I,R) is efficient if there does not exist another match-
ing ν ∈M(I,R) such that

Mµ ⊆Mν and Mµ 6= Mν .

Amatchingµ is efficient if and only if it ismaximal, i.e., there is no othermatching
ν in which all the patients getting a kidney in µ also get a kidney under ν, plus some
others.

Exercise 3.2. Note that a pairwise kidney exchange problem does not include pref-
erences, which, in turn, does not allow to have a definition of Pareto efficiency. How
would you alter the definition of a pairwise kidney exchange problem, so that the
problem admits a notion of Pareto efficiency? What would it be? How would it be
related to the notion of an “efficient matching” in Definition 3.1?
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We can think of a pairwise kidney exchange problem (I,R) as an undirected
graph with n vertices, one for each patient-donor pair, in which two vertices are
connected if they are compatible. That is, R is the matrix of edges. In the next
section we will introduce a useful tool from graph theory.

3.4 Matroids

A matroid is a pair (X, I) where X is a finite set, called the ground set, and I a
collection of subsets of X , called the independent sets, that satisfy the following
properties:

(i) the subsets of independent sets are also independent, i.e., if J ∈ I and J ′ ⊆ J
then J ′ ∈ I;

(ii) if one independent set J is larger than another one J ′, i.e., |J | > |J ′|, then
there exists x ∈ J \ J ′ such that J ′ ∪ {x} is an independent set.

Matroids appear in a variety of contexts. If we take X as the set containing the
columns of a matrix, and let I be the collection of all linearly independent columns,
then (X, I) forms a matroid. As another example, let X be some finite set and n
some integer smaller than |X|. If we let I = {S ⊆ X : |S| ≤ n}, then the pair (X, I)

is a matroid.

Proposition 3.3. A group of patient-donors pairs J ⊆ I is said to be matchable if there
exists a matching in which every pair in J receives a kidney. Let I be the collection of all
groups of patient-donor pairs that are matchable, i.e.,

I = {J ⊆ I : ∃µ ∈M(I,R) s.t. J ⊆Mµ} .

Then, (I, I) is a matroid.

Proof. The first part of the proof is immediate since J ′ ⊆ J ⊆Mµ for somematching
µ implies J ′ ∈ I. Let J, J ′ ∈ I with |J | > |J ′|. Let µ and µ′ be two matchings such
that

J ⊆Mµ and J ′ ⊆Mµ′ .
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We want to show that there exists some i ∈ J \ J ′ and some matching ν such that
J ′ ∪ {i} ⊆Mν .

If there exists some i ∈ J \J ′ such that µ′(i) 6= i, i.e., such that µ′ alreadymatches
i, then J ′∪{i} ⊆Mµ′ , andwe can simply take ν = µ′. Hence, assume every i ∈ J \J ′
is not matched under µ′. Fix i1 ∈ J \ J ′. Pair i1 is matched by µ to some pair i2.
Then,

(a) if i2 /∈ Mµ′ , define ν by adding a match between i1 and i2 to µ′. Then, we have
that J ′ ∪ {i1} ⊆Mν .

(b) If i2 ∈ Mµ′ , then i2 is matched to some i3 6= i1 under µ′. If i3 /∈ Mµ, then we
have formed a finite sequence, also known as a path, of agents i1, i2, i3 such that

i1 ∈ J \ J ′, µ(i1) = i2, µ′(i2) = i3, i3 /∈Mµ.

If i3 ∈ Mµ, then the path would have one more pair; namely, i4, the match of
i3 under µ, which is different to i1 and i2. Subsequently, if i4 is matched under
µ′, the path would go on. This means that, in general, we can define all such
alternating paths, which are sequences of pairs with the first pair in J \ J ′, and
each subsequent pair being matched under both µ and µ′, except the last one,
which is matched only under one of the two matchings. That is, an alternating
path is a sequence of pairs i1, i2, . . . , ik such that

i1 ∈ J \ J ′, µ(i1) = i2, µ′(i2) = i3, µ(i3) = i4, . . . , ik /∈Mµ ∩Mµ′ ,

where last pair might belong to either J or J ′, but not both. We argue that
there must exist at least one path P such that the last pair ik is matched under
µ. Notice that if this were not the case, this would imply that there are more
elements in J ′ \J than in J \J ′ (since all the pairs within a path are unique and
each pair appears in exactly one path), which is a contradiction since |J | > |J ′|.
Take anypath inwhich the last agent ismatchedunderµ, anddefinematching ν
as follows. For every i along the path, let ν(i) = µ(i); otherwise, let ν(i) = µ′(i).
Hence, note that matching ν is well-defined and J ′ ∪ {ik} ∈Mν .

Q.E.D.

34



Contents

The next result shows why it is useful to think of the matroid underlying a pair-
wise kidney exchange problem.

Proposition 3.4. If µ, ν ∈M(I,R) are efficient, then |Mµ| = |Mν |.

Proof. Suppose µ and ν are efficient, butMµ > Mν . By condition (ii) of a matroid,
there exists matching ν ′ and some i ∈ Mµ \Mν such that Mν ∪ {i} ⊆ Mν′ , which
contradicts ν being efficient. Q.E.D.

The above result shows that looking for efficient matchings is equivalent tomax-
imizing the number of matches. However, note that this result is no longer true if
we allow exchanges among more than two patient-donor pairs.

Exercise 3.5. Provide an example of a multi-way kidney exchange in which there
are two efficient matchings with distinct number of matches.

3.5 Priority Mechanisms

In this section, we study priority mechanisms in the context of pairwise kidney ex-
change. Fix an ordering π : I → I of patient-donor pairs. To simplify the notation,
assume that I = {1, . . . , n} are already ordered according to π.

Definition 3.6. Given a pairwise kidney exchange problem (I,R), define the set of priority
mechanisms as follows. Let E0 =M(I,R), and define for every k ≤ n,

Ek =


{
µ ∈ Ek−1 : µ(k) 6= k

}
if ∃ µ ∈ Ek−1 s.th. µ(k) 6= k

Ek−1 otherwise

The set of priority matchings is given by En.

In step 1, we consider E1, the set of all matchings µ under which patient 1 re-
ceives a kidney. In step 2, we consider all the matchings µ ∈ E1 in which patient 2
also receives a kidney, and so on. A priority matching matches as many patients as
possible starting with the patient with the highest priority and following the prior-
ity ordering, never “skipping” or “sacrificing” a higher priority patient because of
a lower priority patient.

Proposition 3.7. Every priority matching is efficient.
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Exercise 3.8. Prove Proposition 3.7.

The result is not quite obvious. Intuitively, one might expect that by restricting
attention in step 1 to matchings where patient 1 receives a kidney, we might end
up with an inefficient allocation. However, this is not the case. Even though two
different priority matchings might differ in the set of patients that are matched,
they will always match the same number of patients. As Roth, Sönmez, and Ünver
(2005) note in their original paper, “there is no trade-off between priority allocation and
the number of transplants that can be arranged.”

In practice, the basic data for the problem (I,R) is determined by the laboratory
results of tissue type compatibility tests. However, in a kidney exchange it is im-
possible to prevent a patient from declining a medically compatible kidney. Given
a priority mechanism, a patient might report a subset Ai ⊆ Ki of kidneys as accept-
able to them, whereKi = {j ∈ I : rij = 1}.

Proposition 3.9. In a priority matching mechanism, it is strategy-proof for the patients to
report Ai = Ki.

Proof. Let φ be a prioritymechanism. It is clear that a patient who ismatched cannot
gain by lying. Consider a patient i who is unmatched when they report the truth.
Let Ek be the k-th step set obtained when agent i reports the truth, and consider a
deviation to Ai and the resulting set Ekd . Then, Ekd ⊆ Ek for every k < i since, at
every step, by excluding some compatible kidneys, the agent can only shrink the
chances of a match. Let µ be the matching selected by φ under truth-telling. By the
definition of priority matching, if µ(i) = i then µ′(i) = i for all µ′ ∈ E i−1. Since
E i−1d ⊆ E i−1, this implies that imust also be unmatched when lying.

Q.E.D.

Notes

Roth, Sönmez, and Ünver (2004) first applied and extended the results from house
allocationwith existing tenants to study kidney exchange problems. The discussion
on pairwise kidney exchange and priority mechanisms is based on their follow-up
paper Roth, Sönmez, and Ünver (2005).
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4 Random allocations

Deterministic mechanisms, such as the Serial Dictatorship, often depend on exoge-
nous priority orders. Depending on our design goals, this can be a design feature
or liability. Priority orders make sense when there are external reasons for which
we might wish to prioritize certain market participants over others. However, in
the absence of a valid justification, priority orders may be a liability since they are
asymmetric, and thus unfair, by nature. A natural way to overcome this is to ran-
domise allocations. Indeed, randomisation is common in multiple real-life alloca-
tion mechanisms. It is used to assign students to public schools when the number
of seats is scarce, to ration offices and parking spaces, and to select citizens to serve
as jury members. In this section, we study random allocations.

Formally, a random allocation problem has the same ingredients as a house
allocation problem: a set of n agents I , a set of n objectsX , and a preference profile
(<i)i∈I ∈ P(X)n. Instead of focusing on deterministic matchings as we have done
in previous sections, we focus on random allocations.

Definition 4.1. A random allocation is an n-by-n bistochastic matrix P = (Pix)i,x,
where Pix is the probability that object x is assigned to agent i. P bistochastic matrix
means that the entries of every row and column of P add up to 1, that is, for every i ∈ I and
x ∈ X ,

∑
x′∈X

Pix′ = 1 and
∑
i′∈I

Pi′x = 1.

Denote the set of all random allocations by A(I,X).

4.1 Birkhoff-von Neumann theorem

A random allocation can be thought of as specifying a probability distribution over
the set of objects for each agent. In principle, if we take these distributions to be
independent, nothing in Definition 4.1 seems to preclude an agent to be allocated
more than a single object. However, note that the bistochastic requirement limits the
degrees of freedomwe have over these distributions. A natural way of guaranteeing
that each agent is assigned exactly one objectwould be to define a randomallocation
as a probability distribution over the set of matchingsM(I,X). As it turns out,
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the Birkhoff-von Neumann Theorem establishes some sort of equivalence between
random allocations and lotteries over deterministic matchings.

As an example, consider the following random allocation with two agents and
two objects:

P =

[
P1x P1y

P2x P2y

]
=

[
1/3 2/3

2/3 1/3

]
.

It is tempting to implement P by assigning the first object x among agents with
probabilities (P1x, P2x) = (1/3, 2/3), and then the second object y independently
with probabilities (P1y, P2y) = (2/3, 1/3). However, this would be incorrect since
there would be a positive probability of assigning both objects to the same agent.
Namely, note that after assigning the first object, the second object is automatically
assigned. Indeed, this idea is captured by the fact that the second row (or column)
in P is actually redundant given the bistochastic requirement.

Another possibility is to consider the two deterministic allocations, i.e., match-
ings, µ1 and µ2 given by:

µ1 =

[
1 0

0 1

]
, and µ2 =

[
0 1

1 0

]
.

In this case, we could think of a random allocation as a lottery over the set of match-
ings, i.e., θ ∈ ∆M(I,X) with θ(µ1) = 1/3 and θ(µ2) = 2/3.4 Clearly, in this example
both P and θ result in the same final outcome. The Birkhoff-von Neumann Theo-
rem establishes that this decomposition of a random allocation into deterministic
matchings is always possible.

Theorem 4.2 (Birkhoff-von Neumann). Every random allocation P can be decomposed
into a lottery θ over the set of deterministic matchings, such that, for every i ∈ I and x ∈ X ,

Pix =
∑

µ∈M(I,X)

θ(µ) · 1 {µ(i) = x} .

Notably, the Birkhoff-von Neumann Theorem does not establish uniqueness.
That is, there might be multiple lotteries over the set of matchings that result in
the same random allocation.

4Here, we denote the set of all probability measures over a setX by ∆X .
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4.2 Ordinal preferences and stochastic dominance

So far, we have assumed that each agent is endowed with a preference relation. As
we discussed in Section 1, preference relations are ordinal by nature. The advantage
of this assumption is that the mechanisms we have considered so far have not relied
on agents’ preference intensities.5 However, when it comes to ranking random allo-
cations, preference relations are not enough. The reason is because, as the following
example shows, they do not include information about preferences for risk.

Example 4.3. Suppose the set of objects consists of monetary sums, X = {$0, $10, $18}.
Even if we take for granted that every agents prefers more money to less, this does not allow
us to rank random allocations. For instance, consider agent i and the random allocations P
and Q such that

Pi,$10 = 1 and Qi,$0 = Qi,$18 = 1/2.

Under P , agent i gets $10 for sure, while underQ they get nothing with probability 1/2 and
$18 otherwise. Does agent i prefer P or Q? Given the information on <i, we cannot tell.
An agent may find Q too risky and prefer P , or may not mind the risk and prefer Q.

Now, consider random allocation R such that Ri,$18 = Ri,$10 = 1/2. In this case,
R assigns both $18 and $10 with equal probability, while P assigns all probability to $10.
Whatever the outcome in R, agent i can only be better off than the corresponding outcome
in P . Therefore, it seems reasonable to assume that i prefers R to P . Similarly, note that it
is reasonable to assume that R is better than Q.

Example 4.3 above shows that, only in certain cases, preference relations are
enough to obtain a ranking over random allocations. The next definition formalizes
this notion.

Definition 4.4. Given a preference profile (<i)i∈I , and two random allocations P and Q,
we say that P (first-order) stochastically dominates Q if for every i ∈ I and every

5Measuring preference intensity is not straightforward since it is not clearwhat is the right “scale.”
In real-life, agents usually express preference intensity via willingness to pay. However, this notion
heavily relies on agents’ initial wealth. In the absence of a standard scale or utility measure, it is not
obvious how to elucidate individual preferences. Furthermore, it is not clear that agents will agree on
the right scale to express preference intensity. For example, if we use willingness to pay, agents with
relatively low wealth may not find it acceptable, and may misreport their utility if the right incentives
are not in place.
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x ∈ X ,

∑
y∈X:y<ix

Piy ≥
∑

y∈X:y<ix

Qiy.

Intuitively, random allocation P stochastically dominates Q if, for every agent
i and every object x, the probability of obtaining an object better than x is higher
under P than under Q. Importantly, note that stochastic dominance is an incom-
plete order, not all random allocations P and Q are comparable. Building on the
definition of stochastic dominance, we define our efficiency notion for random allo-
cations.

Definition 4.5. A random allocation is ordinally efficient if there is no other random
allocation that stochastically dominates it.

Exercise 4.6. What is the intuition behind the definition of ordinal efficiency? Namely,
how does it relate to the notion of Pareto efficiency in deterministic allocations? Can
you think of a different way of defining “efficiency” in the Pareto sense for random
allocations? Would agents participate in mechanisms that do not produce ordinally
efficient allocations? Why?

4.3 Cardinal preferences

Another approach to the one described above is to take a stance on agents’ prefer-
ences for risk. That is, why not assume that agents preferences are represented by
a utility function and take expectations? As we shall see, taking this route without
making further assumptions is equivalent to working with the notion of stochastic
dominance.

Suppose that each agent comes endowed with a utility function ui : X → R
that is consistent with their preference relation <i. Say that agent i prefers random
allocation P to Q if and only if its expected utility is higher under P than under Q,
i.e.,

∑
x∈X

ui(x)Pix ≥
∑
x∈X

ui(x)Qix.

Note that this expected-utility ranking is complete over the space of random allo-
cations. Denote by U(<) the set of all utility functions that represent the preference
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relation <. That is,

U(<) = {u : X → R : ∀x, y ∈ X,x < y ⇔ u(x) ≥ u(y)} .

The next result shows that, if random allocation P stochastically dominates Q,
then P provides higher utility than Q for every agent under every utility function
that is compatible with their ordinal preferences. Therefore, ordering random al-
locations according to stochastic dominance amounts to being agnostic about the
cardinal aspect of preferences. In this sense, stochastic dominance may be seen as
an “assumption-free” ordinal criterion.

Proposition 4.7. Let (<i)i∈I be a profile of agents’ preferences. The random allocation P
first-order stochastically dominatesQ if and only if for every i ∈ I and every utility function
ui ∈ U(<i),∑

x∈X
ui(x)Pix ≥

∑
x∈X

ui(x)Qix.

Exercise 4.8. Prove Proposition 4.7.

4.4 Random serial dictatorship

The random serial dictatorship is perhaps the simplest way of allocating objects.
Its definition is familiar. First, each agent submits a linear order <i over the set of
objects. Then, we randomly choose an order over the agents. There are as many as
n! orders, and each one is chosen with the same probability. We then assign the first
agent to their top choice, the second agent to their top choice among the remaining
ones, and so on.

Given the preference profile reported by the agents (<i), the random serial dic-
tatorship produces a random allocation P [(<i)], where

P [(<i)]xi = P {object x is assigned to agent i} .

This probability is not easy to compute, as it depends in a complicated way on the
profile of preferences (<i). For example, fix an agent i and suppose that under their
reportedpreference<i objectx∗ is ranked as their top choice. What is the probability
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that i gets their top choice, P [(<i)]ix∗? We know that

P [(<i)]ix∗ ≥
1

n

since agent i will have the top priority with probability 1/n, and hence will be as-
signed x∗. However, this probability could be higher depending on the preferences
of the other agents.

Exercise 4.9. Say that a random mechanism φ : P(X)n → A(X) is ex-post Pareto
efficient if, for all (<i) ∈ P(X)n, every realisation of the random allocation φ[(<i)]

is a Pareto efficientmatching. Evaluate: the Random Serial Dictatorshipmechanism
is ex-post Pareto efficient.

Exercise 4.10. Evaluate: the Random Serial Dictatorship mechanism is strategy-
proof.

Random serial dictatorship is a mechanism that is well known, and has many
desirable properties, among which are its simplicity and fairness. Perhaps surpris-
ingly, the mechanism is not guaranteed to produce a random allocation that is ordi-
nally efficient. Consider the following example.

Example 4.11. Let I = {1, 2, 3, 4} and X = {x, y}. Assume x �i y for i = 1, 2, and
y �i x for i = 3, 4.6 Let P be the random allocation corresponding to the random serial
dictatorship. The probabilities that agent 1 obtains objects x and y are, respectively,

P1x =
5

12
and P1y =

1

12
.

To obtain the above expressions, proceed as follows. There are 4! = 24 possible orders. Under
half of them, agent 1 is in the third or fourth priority and gets no object. They obtain their
top-choice x if they get the first priority (6 cases) or if they are in the second priority (6
cases) while agent 2 is not in the top priority (2 cases). Hence, they obtain their top choice
in 6 + 6 − 2 = 10 cases, and the probability of obtaining it is thus 10/24 = 5/12. Note
that agent 1 obtains their second choice y if and only if agent 2 gets the top priority and they
get the second one (2 cases), which yields a probability of 2/24 = 1/12. Finally, note that
the probabilities for agent 2 are the same as for agent 1, and those for agents 2 and 3 are
symmetrical.

6Having two objects instead of four simplifies the calculations, but it is not essential. The same
phenomenon can happen with n agents and n objects.
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The resulting random allocation P is not ordinally efficient. Consider the following
mechanism. We flip two fair coins. The firs coin determines whether agent 1 or 2 gets object
x, and the second coin whether agent 3 or 4 gets y. Denote the resulting random allocation
by Q. Therefore,

Q1x = Q2x = Q3y = Q4y = 1/2, and Q1y = Q2y = Q3x = Q4x = 0.

Note that Q first-order stochastically dominates P . The probability of getting an object is
one half for each agent under both mechanisms. However, all the probability mass is on each
agent’s top-choice under Q, while it is split across both alternatives under P . Intuitively,
this means that every agent prefers allocation Q over P .

Exercise 4.12. Provide an example of a house allocation problem in which Random
Serial Dictatorship always generates an ordinally efficient random allocation.

4.5 Top-trading cycle with random endowments

Now, consider extending another of the deterministic mechanisms we have studied
in previous sections, the Top-Trading Cycle. The intuition is very simple. The TTC
is formally defined for housing markets, in which agents initially own a house. In
this setting, we first assign the objects to agents uniformly at random and then run
TTC with their initial endowments. The mechanism is attractive since the TTC has
several desirable properties in the deterministic case. However, it suffers from the
same shortcomings as the Serial RandomDictatorship. Indeed, they are equivalent.

Theorem 4.13 (Abdulkadiroğlu and Sönmez 1998). Let φRSD : P(X)n → A(X) and
φTTC : P(X)n → A(X) be the Random Serial Dictatorship and the Top-Trading Cycle
with Random Endowments mechanisms, respectively. As long as |I| = |X| = n, for every
(<i) ∈ P(X)n, i ∈ I and x ∈ X ,

φRSD[(<i)]ix = φTTC [(<i)]ix.

Exercise 4.14. Prove Theorem 4.13.
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4.6 Probabilistic serial mechanism

A natural question is whether there exists a mechanism that is guaranteed to pro-
duce a random allocation that is ordinally efficient. This question was solved by
Bogomolnaia andMoulin (2001). Their mechanism, called Probabilistic Serial, pro-
ceeds as follows.

Algorithm 4.15 (Probabilistic Serial). Given a preference profile (<i)i∈I ∈ P(X)n,
think of each good x ∈ X as a cake of size 1. Let time run continuously in the interval
[0, 1], and proceed as follows.

• At every instant t ∈ [0, 1], each agent eats from the cake corresponding to their favorite
good among the cakes that are not finished. Eating occurs at speed 1: if an agent eats
a cake between t0 and t1, they eat a fraction t1 − t0 of the cake. Each agent can only
eat from one cake at the time.

• The mechanism stops at t = 1. The amount of cake eaten by an agent equals the
probability with which they receive the good. That is, the mechanism outputs a random
allocation P where Pix is equal to the total share of cake x eaten by agent i.

Example 4.16. Let I = {1, 2, 3, 4} andX = {w, x, y, z}. Assume preference are given by:

�1,�2: x, y, z, w, and �3,�4: y, x, w, z.

At time t = 0, agents 1 and 2 start “eating” from object x, while agents 3 and 4 start eating
object y. At time t = 1/2, objects x and y have been completely eaten. Agents 1 and 2 then
start eating shares of object z, while 3 and 4 shares of w. At time t = 1 all goods have been
completely eaten. The resulting random allocation is given by:

P =


P1x P1y P1z P1w

P2x P2y P2z P2w

P3x P3y P3z P3w

P4x P4y P4z P4w

 =


1/2 0 1/2 0

1/2 0 1/2 0

0 1/2 0 1/2

0 1/2 0 1/2

 .

Notably, this random allocation P stochastically dominates the random allocation generated
by the Random Serial Dictatorship. Indeed, as the theorem below shows, this is a general
property of the Probabilistic Serial mechanism.
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Theorem 4.17 (Bogomolnaia and Moulin 2001). For every profile of preferences, the
Probabilistic Serial mechanism produces an ordinally efficient random allocation.

Before proving Theorem 4.17, we prove a useful Lemma. Given a preference
profile (<i) and a random allocation P , define a directed graph as follows. Each
object corresponds to a node. Connect nodes y → x if there is an agent i such that
x �i y and Piy > 0. Denote the resulting graph by G(<, P ).

Lemma 4.18. If random allocation P is stochastically dominated by another random allo-
cation, then G(<, P ) has a cycle.

Proof. Let P,Q ∈ A(I,X) and assume Q stochastically dominates P . Hence, there
exist an agent i1 for whichQ gives higher probability to more preferred alternatives
than P ; that is to say, there exist x, x1 ∈ X s.th.

x1 �i1 x, Q(i1, x1) > P (i1, x) and Q(i1, x) < P (i1, x).

This implies x→ x1. Since∑
i∈I

Q(i, x1) =
∑
i∈I

P (i, x1) = 1,

there exists another agent i2 for which Q assigns object x1 with lower probability
than under P , i.e.,

Q(i2, x1) < P (i2, x1).

Since Q dominates P , there must be another object x2 such that x2 �i2 x1 and Q
assigns x2 to i2 with higher probability than P , i.e.,

Q(i2, x2) > P (i2, x2).

Hence, x1 → x2. Following the same logic, since Q(i2, x2) > P (i2, x2), we can
find another agent i3 for which Q assigns x2 with lower probability than P , i.e.,
Q(i3, x2) < P (i3, x2). And, similarly, sinceQdominatesP , theremust exist an object
x3 such that x3 �i3 x2 and Q(i3, x3) > P (i3, x3). Which implies x2 → x3. Proceed-
ing inductively, we obtain a sequence of objects where each one is connected to its
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predecessor through an arrow. Since the set of objects is finite, we must eventually
find a cycle. Q.E.D.

Sketch of Proof of Theorem 4.17. The intuition behind the Lemma is that agents in a
cycle would like to exchange probabilities. To see this clearly, consider a cycle of
two objects x → y → x. This implies that there exists two agents, i1 and i2, such
that one prefers x to y and is getting y with positive probability, while the other one
prefers y to x and is getting xwith positive probability. Concretely, assume x �i1 y,
P (i1, y) > 0, y �i2 x, and P (i2, x) > 0. Intuitively, these two agents would like
to exchange the probabilities with which they get their least preferred object. The
key to the proof is to realize that these sort of situations are not possible under the
Probabilistic Serial mechanism.

We show this using this simple example of two agents. Let t1 ∈ [0, 1] be the
first time agent i1 eats a share of object y. Since they prefer x to y, it must be that x
was not available at time t1. Similarly, let t2 ∈ [0, 1] be the first time agent i2 eats a
share of object x. Then, object ymust not have been available at time t2. Since y was
available at time t1, then t1 < t2. However, since x was available at time t2, we also
have t2 < t1, which is clearly a contradiction. Q.E.D.

Besides being ordinally efficient, another key property of the Probabilistic Serial
mechanism is that it is envy-free in the sense that no agent would rather have the
assignment of another agent.

Definition 4.19. Given a preference profile (<i)i∈I and a random allocation P , we say that
agent i envies agent j if agent i prefers the random assignment of j under P in the first-order
stochastic dominance sense. That is, i envies j under P if, for every x ∈ X ,

∑
y∈X:y<ix

Piy ≥
∑

y∈X:y<ix

Pjy.

A random allocation is envy-free if no agent envies another one. A random mechanism
φ : P(X)n → A(X) is envy-free if φ[(<i)] is an envy-free random allocation for every
(<i) ∈ P(X)n.

Theorem 4.20. The Probabilistic Serial mechanism is envy-free.

Exercise 4.21. Prove Theorem 4.20.
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Notes

The analysis of TTC with Random Endowments is from Abdulkadiroğlu and Sön-
mez (1998). The Probabilistic Serial mechanism was developed and analyzed by
Bogomolnaia and Moulin (2001). They offer further characterizations for the Ran-
dom Serial Dictatorship and the Probabilistic Serial mechanisms, and also provide
an impossibility result. For a simple exposition of the the Birkhoff-von Neumann
Theorem along concrete examples, see Chapter 12 of Haeringer (2017). The discus-
sion over first-order stochastic dominance and utility representation is standard in
the literature, e.g., Mas-Colell, Whinston, and Green (1995).
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5 Marriage market

In this section, we turn to the analysis of two-sided matching markets. In a two-
sided matching market, agents are divided into two sides. Each agent is assumed
to have preferences over the agents on the other side of the market. Following the
seminal contribution of Gale and Shapley (1962), we frame the model in terms of
marriages. There are two finite and disjoint sets of agents, one of men and one of
women. The men are assumed to have preferences over women, and the women
over the men. The main question is, how do we match men and women in a way
in which no one wishes to “divorce” and marry someone who would also like to
marry them.7

Definition 5.1. A marriage market is a tuple (M,W, (<m)m∈M , (<w)w∈W ), whereM
amd W are finite, nonempty, and disjoint sets of men and women, and (<m)m∈M and
(<w)w∈W are preference profiles with <m ∈ P(W ∪ {m}) for every m ∈ M , and <w ∈
P(M ∪ {w}) for every w ∈ W . Often, we denote marriage markets simply by (M,W,<),
where (<) is shorthand for ((<m)m∈M , (<w)w∈W ).

Note thatwe allow for agents to have a preference for themselves, which amounts
to remaining single. If, say, manm has preferences such that w1 �m m �m w2, this
means that m prefers w1 over being single, but would rather remain single than
marrying w2. Accordingly, we allow for agents to remain single in a matching by
matching them with themselves.

Definition 5.2. Amatching is a function µ : M ∪W →M ∪W such that, for allm ∈M
and w ∈W , (i) µ(m) ∈W ∪{m}, (ii) µ(w) ∈M ∪{w}, and (iii) µ(m) = w if and only
if µ(w) = m. Denote the set of all matchings byM(M,W ).

Exercise 5.3. Give 10 real-life examples (different to the ones mentioned in footnote
7) of two-sided matching markets that have the same (or similar) structure as a
marriage market.

7While we stick with the original formulation in terms of a marriage market, we recognize that
it is notably gendered and not inclusive. It restricts attention to monogamous and heterosexual mar-
riages between binary agents. Indeed, in their original formulation, David Gale and Lloyd Shap-
ley (1962) admitted to having “abandoned reality altogether and entered the world of mathematical
make-believe.” Aside from the labels “men,” “women,” and “marriage,” the key content of the model
is that agents are split into two sides, and each agent has preferences over agents on the other side.
Examples of marriage markets include: workers and firms, schools or colleges and students, doctors
and hospitals, advisors and students, adoptees and adoptive parents, patients and organ donors, fos-
ter children and foster homes, etc.
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5.1 Stability and efficiency

Firstly, we consider the notions of Pareto efficiency and stability. The former is the
same one we have used in previous sections: a matching is not efficient if we can
improve someonewithout harming anyone else. The notion of stability is intimately
relatedwith the core. In a stable matching, no onewishes to bematchedwith some-
onewhom they are notmatchedwith andwhowould also prefer to bematchedwith
them.

Definition 5.4. Given a preference profile (<i)i∈M∪W , a matching is Pareto efficient if
there is no matching µ′ such that µ′(i) <i µ(i) for all i ∈ M ∪W and µ′(i) �i µ(i) for
some i ∈M ∪W .

Definition 5.5. Let (<i)i∈M∪W be a preference profile. Womanw is acceptable to manm
if w <m m, and manm is acceptable to woman w ifm <w w. A matching is individually
rational if everyone is matched with an acceptable partner. A pair (m,w) ∈M×W blocks
a matching µ if w �m µ(m) andm �w µ(w). If (m,w) block µ, they are called a blocking
pair. A matching is stable if it is individually rational and admits no blocking pair. Denote
by S(M,W,<) the set of all stable matchings in (M,W,<).

Exercise 5.6. Evaluate: the set of stable matchings coincides with the core.

Our first result shows that every stable matching is Pareto efficient: requiring
stability is at least as restrictive as requiring Pareto optimality.

Proposition 5.7. Every stable matching is Pareto efficient.

Proof. By contradiction, suppose µ′ Pareto dominates µ ∈ S(M,W,<). Wlog, sup-
pose µ′(m) �m µ(m). Let w′ = µ′(m). Then, µ′(w′) <w′ µ(w′) since µ′ Pareto
dominates µ. Note that we actually have µ′(w′) �w′ µ(w′) since µ′(w′) 6= µ(w′).
Then (m,w′) block µ, which is a contradiction. Q.E.D.

Exercise 5.8. Evaluate: every Pareto efficient matching is stable.

Exercise 5.9. Evaluate: the First and Second Welfare Theorems are satisfied in a
marriage market.

Stability is a key criterion both in centralized and decentralized settings. In a cen-
tralized setting, agents do not have incentives to participate in mechanisms that as-
sign non-stable matchings. If the matching prescribed by amechanism is not stable,
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agents will have incentives to deviate from the matching prescribed by the mecha-
nism. In this sense, stability is a requirement for a mechanism to be used and re-
spected by agents. In a decentralized setting, in which agents are left to match with
one another through their own devices, stability is important in the same sense as
the core. It is reasonably to assume that if agents match and unmatch freely with
one another, they will continue to do so until they reach a stable matching. The
first question we address is whether stable matchings always exist, and how to find
them. The answer was provided by David Gale and Lloyd Shapley in 1962.

Algorithm 5.10 (Gale and Shapley 1962). Consider the men-proposing version. Ini-
tially, all men are active and no agent is provisionally matched. Proceed in steps as follows.

• All active men propose to their most preferred woman among the ones they have not
proposed to previously.

• Each woman considers the set of men who have just proposed to her, and their provi-
sional partner if they have one. Women become provisionally matched to their favorite
man among this set. All men who are not provisionally matched become active.

• Stop if there are no active men, or if all active men have proposed to all acceptable
women.

Note: the woman-proposing version of the algorithm is analogous.

The Gale-Shapley Algorithm is also known as the Deferred Acceptance (DA)
algorithm. As we show next, it is the key to showing that the set of stable matchings
S(M,W,<) is nonempty in everymarriagemarket. A key aspect of theGale-Shapley
algorithm is that both sides of the market go through their ranking lists in opposite
directions. In the men-proposing version, men propose to women in the order of
their preference rankings from top to bottom. They start proposing to their most
preferred woman, and continue to propose to women in the order of their ranking
as long as their proposals are not accepted. By contrast, the provisional matches
of women go from bottom from to top: every time a woman accepts a proposal,
it is from a man who is better than her previous match. In the women-proposing
version of the algorithm, the opposite obtains: women go from top to bottom, and
men go from bottom to top.

Theorem 5.11. (Gale and Shapley 1962) The outcome of the Gale-Shapley algorithm is a
stable matching.
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Proof. Let µ be the output of the men-proposing Gale-Shapley algorithm. Men only
propose to acceptable women, and women only accept offers from acceptable men.
Therefore, µ is individually rational. Let m ∈ M and w ∈ W be such that w �m
µ(m). Then, m proposed to w in some iteration of the algorithm. Since µ(m) 6= w,
w accepted the proposal of some manm′ withm′ �w m. Then, µ(w) <w m

′ �w m.
Hence, (m,w) are not a blocking pair. Therefore, µ is stable. Q.E.D.

Exercise 5.12. Let (M,W,<) be amarriagemarket. Evaluate: (i) in a Pareto efficient
matching of (M,W,<), someone must be matched to their most preferred partner;
(ii) in a stable matching of (M,W,<), someone must be matched to their most pre-
ferred partner.

Exercise 5.13. Evaluate: The men- and women-proposing versions of the Gale-
Shapley algorithm always result in the same stable matching.

Definition 5.14. Consider a marriage market (M,W,<). The men are said to have aligned
preferences if every man has the same preference relation, i.e.,<m =<m′ for everym,m′ ∈
M . Similarly, women are said to have aligned preferences if all of them have the same pref-
erence relation.

Exercise 5.15. Let (M,W,<) be a marriage market. (i) How many matchings are
in S(M,W,<) if men have aligned preferences? (ii) How many matchings are in
S(M,W,<) if both men and women have aligned preferences? (iii) How many
rounds does it take for the men-proposing Gale-Shapley algorithm to converge if
men have aligned preferences? (iv) And if (only)women have aligned preferences?
(v) And if both men and women have aligned preferences?

Exercise 5.16. Evaluate: (i) if there is a unique stablematching in amarriagemarket,
then both sides have aligned preferences. (ii) If there is a unique stable matching,
then at least one side has aligned preferences.

Next, we show that, even though finding stable matchings is not a simple prob-
lem at first sight, randomly breaking blocking pairs actually leads to a stable match-
ings with probability one.

Theorem 5.17 (Roth andVande Vate 1990). Let µ be an arbitrary matching in (M,W,<

). There exists a finite sequence of matchings µ1, µ2, . . . , µk, such that µ1 = µ, µk is stable,
and for each i = 1, . . . , k − 1, there is a blocking pair (mi, wi) for µi such that µi+1 is
obtained from µi by satisfying the blocking pair (mi, wi).
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Proof. Letµ ∈M(M,W ). Ifµ is stable, we are finished. Otherwise, select a nonempty
set of agents S ⊆ M ∪W such that there are no blocking pairs for µ contained in
S, and µ does not match any agent in S to any agent not in S. (For example, S may
contain a pair of agents matched under µ, or a single agent for that matter.) Select
an agent not in S, say, woman w. If no man in S is part of a blocking pair with w,
simply add w to S and do not change matching µ. Otherwise, select the manm in S
whomwomanw prefers the most among all the ones with whom she forms a block-
ing pair. Update the matching µ by matching woman w and manm (and breaking
any other matches they were involved in). If there is a woman w′ in S to whom m

used to be matched, she may form a new blocking pair with some other manm′ in
S. If so, choose the blocking pair most preferred by w′ to form the new matching.
Continue this process within the set S ∪{w}, where women “propose” to men as in
the deferred acceptance algorithm. On each stage, update the matching by forming
each subsequent blocking pair. By the same reason for which the deferred accep-
tance algorithm converges to a stable matching, the process will terminate with a
matchingµi inwhich there are no blocking pairswithinSi = S∪{w}. Now, continue
the process iteratively, with the set Si growing at each stage. Since the selected set
has no blocking pairs at the end of each stage, the process will eventaully converge
to astable matching when Sk = M ∪W . Q.E.D.

5.2 Opposition of interests

Theorem 5.18 (Gale and Shapley 1962). Let µM and µW be the outcomes of the men- and
women-proposing Gale-Shapley algorithms, respectively. Then, for every µ ∈ S(M,W,<),

∀m ∈M, µM (m) <m µ(m) <m µW (m);

∀w ∈W, µW (w) <w µ(w) <w µM (w).

Proof. We prove first that µM (m) is the best partner form out of

Am = {w ∈W : ∃µ ∈ S(M,W,<) s.t. w = µ(m)},

the set of women who are matched tom in some matching in S(M,W,<).

If µM does not give every man m his best partner from Am, then there must be
a first step in the Gale-Shapley algorithm in which a man m proposes to a woman
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in Am and is rejected. Before that step, all men who have been rejected, have been
so by women the are never matched to in a stable matching.

Let m be this first man, and suppose that he is rejected by w ∈ Am. Let m′ be
the man accepted by w instead of m: so m′ �w m. Recall that m’s proposal to w is
the first proposal to a stable partner rejected in the course of the algorithm. Som′’s
proposals to women at least as good as w cannot have been to any women in Am′ .
Thus w is at least as good as any partner in Am′ .

Now, since we have assumed that w ∈ Am, there is a matching µ ∈ S(M,W,<)

such that w = µ(m). We have established that w must be at least as good for m′ as
every partner in Am′ , including µ(w′). So w �m′ µ(m′). We also have that m′ �w
m = µ(w). Therefore (m′, w) for a blocking pair to µ, which yields a contradiction.

We now turn to the proof of the statement that µM is the worst matching for
women. Let µ ∈ S(M,W,<) and suppose (towards a contradiction) that there is
some w for which µM (w) �w µ(w). By the result we have shown for µM , and be-
cause preferences are linear orders, we know that µM (w) �µM (w) µ(µM (w)), i.e.,
whoever is matched with w under µM , µM (w), ranks µM (w) above whoever they
are matched with in any other stable matching, in particular, µ. In other words,
there exists a manm such that w �m µ(m) andm �w µ(w). This means that (m,w)

are a blocking pair for µ, contradicting that µ ∈ S(M,W,<). Q.E.D.

Theorem 5.18 shows that there are two matchings in the set of stable matchings,
µM and µW , over which men and women disagree. Every man prefers their part-
ner under matching µM over the one they get under every other stable matching.
Moreover, all men agree that the worst matching among all the stable matchings
is µW . Women have the opposite preferences: all of them find their partner under
µW as the best partner under every stable matching, and the one under µM as the
worst. Furthermore, Theorem 5.18 also shows that these two matchings, µM and
µW , are precisely the ones generated by the Gale-Shapley algorithm when either of
the two sides proposes. The matchings µM and µW are known as the M -optimal
and W -optimal stable matchings, respectively. As we shall see in the rest oft his
subsection, this “opposition of interest” goes beyond these two matchings.

Define the binary relations �M and �W overM(M,W ) as follows:

• µ �M µ′ if µ(m) <m µ′(m) for allm ∈M ;
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• µ �W µ′ if µ(w) <w µ
′(w) for all w ∈W .

Exercise 5.19. Evaluate: the binary relations �M and �W are complete and transi-
tive.

Theorem 5.20 (Knuth 1976). If µ and µ′ are stable matchings, then µ �M µ′ if and only
if µ′ �W µ.

Proof. Let µ and µ′ be stable matchings such that µ �M µ′. Towards a contradiction,
suppose it is not true that µ′ �W µ. Then, there exists w ∈ W such that µ(w) �w
µ′(w). Then, man m = µ(w) is matched to another woman under µ′, which he
prefers less to w (since µ �M µ′). Then, we have m �w µ′(w) and w �m µ′(m),
meaning that (m,w) block µ′, which is a contradiction. Q.E.D.

Theorem 5.20 states that all men agree on the ranking of two stable matchings if
and only if all women agree in the opposite direction. In this sense, the opposition
of interest goes beyond the “extreme” stable matchings µM and µW . It permeates
the whole set of stable matchings.

Definition 5.21. Let (M,W,<) be a marriage market. The set of stable partners of i ∈
M ∪W , denoted by Pi, is the set of agents who i is matched to in some stable matching, i.e.,

Pi = {j ∈M ∪W : ∃µ ∈ S(M,W,<), µ(i) = j} .

Theorem 5.22. Consider the matching formed by matching every woman to their most
preferred stable partner. The resulting matching is well-defined, stable, and equal to the W-
optimal matching. Furthermore, the same matching results from matching every man to
their least preferred stable partner.

Exercise 5.23. Prove Theorem 5.22.

The above results suggest that stable matchings can be ordered. To formalize
this idea, for any two matchings µ, µ′, define the join of µ and µ′ as the matching
µ ∨M µ′ such that, for everym ∈M and w ∈W ,

µ∨Mµ′(m) =


µ(m) if µ(m) �m µ′(m)

µ′(m) if µ(m) �m µ′(m)

µ(m) otherwise
& µ∨Mµ′(w) =


µ′(w) if µ(w) �w µ′(w)

µ(m) if µ′(w) �w µ(w)

µ(m) otherwise
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Note that µ∨M µ′(i) stands for the agent matched with i in matching µ∨M µ′. Simi-
larly, define themeet of µ and µ′ as thematching µ∧M µ′ such that, for everym ∈M
and w ∈W ,

µ∧Mµ′(m) =


µ′(m) if µ(m) �m µ′(m)

µ(m) if µ(m) �m µ′(m)

µ(m) otherwise
& µ∧Mµ′(w) =


µ(w) if µ(w) �w µ′(w)

µ′(m) if µ′(w) �w µ(w)

µ(m) otherwise

We can define µ ∨W µ′ and µ ∧W µ′ analogously.

A simple way to visualize the join (or meet) of two matchings, say µ ∨M µ′, is
to think of each manm as pointing to his most preferred woman between µ(m) and
µ′(m). And each woman w pointing to her least preferred man between µ(w) and
µ′(w). Then, match every man to the woman they are pointing to and every woman
to the man they are pointing to. The first question to ask is whether a matching
defined in this way is well-defined. That is, is it the case that a man always points
to a woman who is pointing at him? The Theorem below shows that this is indeed
the case when µ and µ′ are stable matchings. However, it is not true in general.

Exercise 5.24. Show with an example that the join and meet between two (non-
stable) matchings may fail to be a matching.

Theorem 5.25 (Conway). If µ and µ′ are stable matchings, then both µ∨M µ′ and µ∧M µ′

are stable matchings.

Proof. First, we show that µ∨M µ′ is a matching by showing µ∨M µ′(m) = w if and
only if µ ∨M µ′(w) = m. (i) Let µ ∨M µ′(m) = w. Wlog, assume w = µ(m), so that
w �m µ′(m). We want to show that µ ∨M µ′(w) = m, i.e., that µ′(w) �w m. Note
that this must be the case, sincem �w µ′(w) would imply that (m,w) block µ′.

(ii) Let µ ∨M µ′(w) = m. We show that µ ∨M µ′(m) = w. Let M ′ be the set of
men who are matched to a woman in at least one of matchings µ and µ′, i.e.,

M ′ = {m ∈M : µ ∨M µ′(m) ∈W}.

Define the setW ′ as the set of women who are matched to some man under both µ
and µ′, i.e.,

W ′ = {w ∈W : µ ∨M µ′(w) ∈M}.
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We show thatW ′ = µ ∨M µ′(M ′), where µ ∨M µ′(M ′) denotes the set of women w
such that w = µ∨M µ′(m) for somem ∈M ′. First, we show (a) µ∨M µ′(M ′) ⊆W ′,
and, second, we show (b) |W ′| ≤ |µ ∨M µ′(M ′)|.

(a) Let w ∈ µ ∨M µ′(M ′), then w = µ ∨M µ′(m) for some m ∈ M ′. By (i) above,
m = µ ∨M µ′(w), which implies w ∈W ′.

(b) First, note that |W ′| = |µ(W ′)|. Now, we show (b.1) |µ(W ′)| ≤ |M ′|, and
(b.2) |M ′| = |µ ∨M µ′(M ′)| to conclude this part of the proof. To show (b.1),
actually note that µ(W ′) ⊆ M ′ since m ∈ µ(W ′) implies m = µ(w) for some
w ∈W ′ ⊆W . To prove (b..2), note that µ∨M µ′(m) = µ∨M µ′(m′) = w implies
m = m′ by (i) above (hence the mappingM ′ 7→ µ ∨M µ′(M ′) is one-to-one).

Recall that we have µ ∨M µ′(w) = m, and we want to show µ ∨M µ′(m) = w. By
hypothesis, w ∈ W ′, so by what we just proved there exists m′ ∈ M ′ such that
µ∨M µ′(m′) = w. To conclude this part of the proof, we show thatm = m′. Towards
a contradiction, assume m 6= m′. Wlog, assume m = µ(w) and m′ = µ′(w). Then,
m′ = µ′(w) �w µ(m) = m andw′ = µ′(m) �m′ µ(m′), which is a contradiction since
(m′, w) would block µ. Therefore, µ ∨M µ′ is a matching. By an analogous proof,
one can show that µ ∧M µ′ is also a matching.

To finalize the proof of the theorem, we show that µ ∨M µ′ is stable. Towards
a contradiction, suppose (m,w) block µ ∨M µ′. Then, w �m µ ∨M µ′(m), which
implies w �m µ(m) and w �m µ′(m). Similarly, m �w µ ∨M µ′(w). Hence, if
µ ∨M µ′(w) = µ(w), (m,w) block µ. Alternatively, if µ ∨M µ′(w) = µ′(w), they
bock µ′. Either way, we obtain a contradiction since both µ and µ′ are stable. The
symmetric argument shows that µ ∧M µ′ is also stable. Q.E.D.

Theorem 5.25 characterizes the structure of the set of stable matchings. Namely,
it shows that whenever we have two stable matchings, µ and µ′, we can find another
two stable matchings by following a simple procedure. If we match every manm to
their most preferred woman between µ(m) and µ′(m), this results in another stable
matching, denoted µ ∨M µ′. Similarly, the matching obtained by matching every
man to their least preferred woman between µ(m) and µ′(m) is also stable, and
denoted µ∧M µ′. The results above also imply that the opposite obtains if we follow
the same procedure for women. That is, matching every woman w to their most
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preferred man between µ(w) and µ′(w) yields matching µ ∧M µ′, and to their least
preferred one yields µ ∨M µ′.

Exercise 5.26. Show that if there is a unique stable matching, then µM = µW =

µM ∨M µW = µM ∧M µW .

Exercise 5.27. Consider amarriagemarket. Assume there exists aman and awoman
that arematched to each other in the output of both theman- andwoman-proposing
Gale-Shapely algorithm. Show that they are matched to each other in every stable
matching.

Exercise 5.28. Show that if an agent is single in one stable matching, then they are
single in every stable matching. That is, the set of unmatched agents is the same in
every stable matching.

In more formal terms, Theorem 5.25 shows that the set of stable matchings has a
lattice structure. While we define formally the notion of a lattice in the next subsec-
tion, it is fairly simple to illustrate. A lattice is a partially ordered set in which every
pair of elements has a “join” and a “meet”, which are also elements of the lattice.
Figure 2 presents several examples of lattice structures. In each of the examples,
the order is sideways: from left to right, or right to left. At the extremes, each lat-
tice has the M-optimal andW-optimal stable matchings. The matchings in between
may or may not be ordered within themselves. For example, in the middle-right
example with five stable matchings, matching µ1 is more preferred by all men (and
less preferred by all women) to matchings µ2 and µ′2. Indeed, µ1 = µ2∨M µ′2. How-
ever, matchings µ2 and µ′2 are not ordered, meaning that not every man (or every
woman) agrees on which one is better.

Exercise 5.29. Give an example of a marriage market in which the set of stable
matchings contains four matchings and has the lattice structure in the upper-right
corner of Figure 2.

5.3 Stable matchings as fixed points

A partially ordered set (poset) is a set endowed with a partial order, which is a
reflexive, antisymmetrtic, and transitive binary relation.8 Given a poset, (X,≤), (i)

8A binary relation is reflexive if every element is related to itself.
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µM µ µW µM µ1
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µ4

µ′4

µ5 µW

Figure 2: Examples of lattice structures

the upper bound of a subset S ⊆ X is an element u ∈ X such that s ≤ u for every
s ∈ S; (ii) the least upper bound or join of S ⊆ X is the element ∨S ∈ X such that
∨S is an upper bound of S and ∨S ≤ u for every upper bound u of S; (iii) the lower
bound of a subset S ⊆ X is an element l ∈ X such that l ≤ s for every s ∈ S; (iv)
the greatest lower bound or meet of S ⊆ X is the element ∧S ∈ X such that ∧S is
a lower bound of S and l ≤ ∧S for every lower bound l of S.

The join of a two-element subset {x, y} ⊆ X is denoted by x ∨ y; its meet by
x ∧ y. A poset (X,≤) is called a lattice if every two-element subset {x, y} ⊆ X has
a join and a meet. If every subset of the poset has a join and a meet, then it is called
a complete lattice.
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Exercise 5.30. Show that the poset ([0, 1],≤), where [0, 1] is the unit-interval in the
real line and ≤ the usual “less than or equal” relation on the reals, is a lattice.

Exercise 5.31. Define ≤ on R2 as follows. For x, y ∈ R2, let x ≤ y if x1 ≤ y1 and
x2 ≤ y2, where x = (x1, x2) and y = (y1, y2). (i) Show that the poset ([0, 1]2,≤) is
a lattice, where x ∈ [0, 1]2 if and only if 0 ≤ min{x1, x2} and max{x1, x2} ≤ 1. (ii)
Let A ⊆ R2

+ be such that (x, y) ∈ A if and only if x+ y ≤ 1. Show that (A,≤) is not
a lattice.

Theorems 5.11 and 5.25 imply that the set of stable matchings S(M,W,<) and
the binary relation �M (or �W ) form a nonempty lattice. In this section, we will
obtain the same result via a fixed-point argument.

Definition 5.32. A prematching is a function ν : M ∪W → M ∪W such that for all
m ∈M and w ∈W , (i) µ(m) ∈W ∪ {m}, and (ii) µ(w) ∈M ∪ {w}.

Prematchings are also known as fantasies since a man (or woman) can be pre-
matched to a woman (or man) that is not prematched to them. Similarly, in a pre-
matching, two men (or women) can be prematched to the same woman (or man).
A simple way to picture fantasies is to imagine them as every man pointing to a
woman and every woman pointing to a man. While matchings must to be recipro-
cal (if a man points to a woman, she must be pointing back at him), fantasies need
not be reciprocal. All matchings are fantasies, but not conversely.

For prematching ν,m ∈M and w ∈W , define the following sets:

A(m, ν) = {w ∈W : m <w ν(w)} ,

A(w, ν) = {m ∈M : w <m ν(m)} .

That is, A(m, ν) is the set of women willing to match withm, given their fantasy in
ν. Define a function T mapping fantasies to fantasies, by (Tν)(m) being the optimal
choice for<m in A(m, ν)∪ {m}, for anym ∈M ; and similarly by (Tν)(w) being the
optimal choice for <w in A(w, ν) ∪ {w}, for any w ∈ W . Under fantasy Tν, every
man points to hismost preferredwoman among the oneswhowerewilling tomatch
with him under fantasy ν. And the same for women. Finally, for any two fantasies
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ν and ν ′, say that ν is less than ν ′, denoted by ν ≤ ν ′ if

∀m ∈M, ν ′(m) <m ν(m);

∀w ∈W, ν(w) <w ν
′(w).

Lemma 5.33. T is monotone increasing, ν ≤ ν ′ implies Tν ≤ Tν ′.

Proof. Let ν ≤ ν ′. We show that A(m, ν) ⊆ A(m, ν ′) and A(w, ν) ⊇ A(w, ν ′), for all
m and w. To see this, note that if w ∈ A(m, ν) then

m <w ν(w) <w ν
′(w),

so w ∈ A(m, ν ′). Similarly for A(w, ν) ⊇ A(w, ν ′). Since the best element from a
larger set cannot beworse than froma smaller, (Tν ′)(m) <m (Tν)(m) and (Tν)(w) <w

(Tν ′)(w). Thus Tν ≤ Tν ′. Q.E.D.

Lemma 5.34. A matching µ is stable if and only if it is a fixed point of T .

Proof. (⇒) Let µ be a stable matching. We must show that µ = Tµ. Suppose, by
way of contradiction, that there is an element of A(m,µ)∪{m} that is strictly better
than µ(m). By individual rationality, µ(i) <i i for all i ∈ M ∪W . So this element
cannot be m. Suppose that w ∈ A(m,µ) is such that w �m µ(m). Then, w 6= µ(m),
which implies that m 6= µ(w) as µ is a matching. Then, w ∈ A(m,µ) implies that
m �w µ(m) because < is a strict preference. Then (m,w) would form a blocking
pair, a contradiction.

(⇐) First, we show that a fixed point is a matching, not just a prematching. Let
ν = Tν. Suppose, by way of contradiction, that there is (m,w) with w = ν(m) and
m 6= ν(w). Then, w ∈ A(m,µ) so m <w ν(w). Since m 6= ν(w), m �w ν(w). But
m ∈ A(w, µ) since ν(m) = m. A contradiction, as ν is a fixed point of T .

Second, we show that ν is stable. By construction, ν is individually rational
since ν(i) = (Tν)(i) <i i. If w �m ν(m) then m ∈ A(w, ν), which implies ν(w) =

(Tν)(w) �w m since ν(w) 6= m. So (m,w) are not a blocking pair. Q.E.D.

In light of the previous lemmas, the existence of a stablematching and the under-
lying lattice structure of the set of stablematchings can be obtained as a consequence
of the following fixed-point theorem.
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Theorem 5.35 (Tarski’s fixed point theorem). The set of fixed points of a monotone
function on a lattice is a nonempty and complete lattice.

Finally it is worth pointing out that this formalism also leads to a natural algo-
rithm for finding a stable matching. Let ν̄ be a prematching where ν̄(w) = w for
all w and ν(m) is the best alternative in W ∪ {m} for all m. Define a sequence of
prematchings νk by letting ν0 = ν̄ and νk+1 = Tνk. Then, there is K such that
µ = νK is a stable matching. To observe why the sequence νk converges to a stable
matching, note that by monotonicity

T (T ν̄) ≤ T ν̄ ≤ ν̄.

Hence, we obtain a decreasing sequence

· · · νk+1 ≤ νk ≤ · · · ≤ ν̄.

Since the set of prematchings is finite, the sequence must eventually be constant. So
there is K large enough such that Tνk = νk+1 = νk, a fixed point of T . In fact, the
sequence converges to the M-optimal stable matching. By defining ν̄ analogously,
we reach theW -optimal stable matching.

5.4 Incentives in the marriage market

� Given two finite and disjoint setsM andW , let P be the set of all strict preference
profiles < such that (M,W,<) is a matching market. Given <∈ P , extend each <i

to a preference overM(M,W ) by µ <i µ
′ if and only if µ(i) <i µ

′(i).

A matching mechanism is a function φ : P → M(M,W ). A matching mecha-
nism is strategy-proof if, for every <,<′ ∈ P , i ∈M ∪W , and <′i,

φ(<) <i φ(<′i,<−i).

A matching mechanism φ is Pareto efficient if for every <∈ P , φ(<) is Pareto effi-
cient in (M,W,<). A matching mechanism φ is stable if for every <∈ P , φ(<) ∈
S(M,W,<).

Theorem 5.36. There is an efficient and strategy-proof mechanism, but there is no stable
and strategy-proof mechanism.
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Proof. Running a serial dictatorship is strategy-proof and Pareto efficient. Indeed,
let M = {m1, . . . ,mn}. For each <, let µ(m1) be the top alternative in <m1 ; let
µ(m2) be the top alternative in <m2 , once µ(m1) is no longer available; let µ(m3) be
the top alternative in<m3 , once µ(m1) and µ(m2) are no longer available; and so on.
The mechanism does not depend on the women’s preferences. It is strategy-proof
because no man can obtain anything better for himself than reporting the truth,
given what the other men are reporting.

To see that there is no strategy-proof stable mechanism, consider the following
particular market. LetM = {m1,m2} andW = {w1, w2}. Let<mi rankwi overw3−i

overmi. Let <wi rankm3−i overmi. There are two stable matchings: µM (mi) = wi

for i = 1, 2, and µW (mi) = w3−i for i = 1, 2. Let φ be a stable mechanism. Then,
φ(<) must coincide with either µM or µW . Say wlog that it coincides with µM .

Consider the preference <′w1
that ranks m2 over w1 over m1; thus making m1

unacceptable. There is a single stablematching in (M,W, (<m1 ,<m2 ,<
′
w1
,<w2)) and

it coincides with µW . So φ is not strategy-proof as m2 = µW (w1) �w1 µM (w1) =

m1. Q.E.D.

Theorem 5.37. The men-proposing Gale-Shapley mechanism is (group) strategy-proof for
the men.

Exercise 5.38. Read the proof of Theorem 5.37 in Chapter 4 of Roth and Sotomayor
(1990).

5.5 Marriage with transferable utility

We turn to a model of a two-sided matching market with transfers due to Shapley
and Shubik (1971). We stick to their original formulation in terms of buyers and sell-
ers. Nonetheless, note that buyers and sellers can be thought of as men and women
who divide the “spoils of marriage.”

Definition 5.39. A matching market with transfers is a tuple (B,S, α), where B and
S are finite, nonempty, and disjoint sets of buyers and sellers, and α = (αij)i∈B,j∈S is a
surplus matrix with αij ≥ 0 for all (i, j) ∈ B × S.

Each buyer seeks to buy one and only one unit of an indivisible good. Each seller
has one unit to sell, but sellers are different from each other, and offer potentially
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different goods. If i ∈ B buys from j ∈ S, they generate surplus αij . You may think
of αij as the sum of the payoffs of i and j from exchanging (or marrying) with one
another. When i buys from j, i obtains some utility ui and j gets some profit vj , so
that ui + vi = αij . For example, if the cost for j is zero, i’s utility is ui = αij − vj ,
where vj is the price (and therefore the profit) that j gets from i. Hence, i buys from
j if αij − vj ≥ αis − vs for all s ∈ S. Similarly, j sells to i if αij − ui ≥ αbj − ub for all
b ∈ B.

Definition 5.40. Amatching is a matrix x = (xij)i∈B,j∈S such that, for all (i, j) ∈ B×S,
xij ≥ 0,

∑
s∈S

xis ≤ 1 and
∑
b∈B

xbj ≤ 1.

If xij ∈ {0, 1} we can interpret xij = 1 as i buying from j, and xij = 0 as i not
buying from j. The above inequalities mean that each buyer buys from at most one
seller, and each seller sells to at most one buyer. However, in principle, xij may be
anywhere in the interval [0, 1]. Matchings in which with some xij ∈ (0, 1) are called
fractional matchings. As we shall see later on, even though fractional matchings
are possible in this model, we will be able to rule them out and focus on matchings
with xij ∈ {0, 1} for every (i, j) ∈ B × S.

Definition 5.41. An assignment is a pair of vectors u = (ui)i∈B and v = (vj)j∈S such
that ui ≥ 0, vj ≥ 0, and there exists a matching x satisfying

∑
i∈B ui +

∑
j∈S vj =∑

i∈B,j∈S αijxij . In such case, we say that matching x supports assignment (u, v).

An assignment is a redistribution of the total surplus in the economy through
a matching. Note that one matching may support distinct assignments. This is
because a matching only incorporates information about who trades with whom,
while an assignment consists of the net payoffs (after transfers) of every agent. Simi-
larly, an assignment can be supported by distinct matchings since buyers and sellers
may reach the same utilities by trading with different parties.

Definition 5.42. An assignment (u, v) is in the core if ui + vj ≥ αij for every (i, j) ∈
B × S.

The notion of the core arises from not allowing blocking pairs. A pair (i, j) can
block an assignment if ui+vj < αij by trading amongst themselves and sharing the
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surplus αij . Assignments in the core can also be seen in terms of individual payoff
optimisation. That is, (u, v) is in the core if and only if, for all (i, j) ∈ B × S,

ui = max {αis − vs : s ∈ S} , and vj = max {αbj − ub : b ∈ B} .

We focus on the relationship between two key notions. On the one hand, we con-
sider efficient matchings, the ones that maximise the total surplus of the economy.
On the other hand, we consider core assignments. As we shall see, both are dual
notions: every core assignment is supported by an efficient matching, and every
efficient matching supports a core assignment.9

Definition 5.43. Amatching x is efficient if it maximizes the total surplus in the economy;
that is, if it solves the following problem:

max
(xij)

∑
i∈B,j∈S

xijαij(?)

subject to xij ≥ 0 ∀ (i, j) ∈ B × S∑
j∈S

xij ≤ 1 ∀ i ∈ B

∑
i∈B

xij ≤ 1 ∀ j ∈ S.

Efficient matchings always exist. Problem (?) is a maximization of a continu-
ous function over a compact set. The existence of a maximizer follows from the
Weierstrass Theorem. The following result states formally what we mean by effi-
cient matchings and core assignments to be dual. As we shall see, the notion of
duality comes from inspecting the dual problem of the linear program (?).

Theorem 5.44 (Shapley and Shubik 1971). For every efficient matching x, there exists
a core assignment (u, v) such that

∑
i ui +

∑
j vj =

∑
i,j αijxij . Likewise, every core

assignment is supported by an efficient matching.

Proof. The proof relies on analyzing the model by means of linear programming
duality. Concretely, we show that there is a duality between problem (?), and that
of finding a core assignment.

9Note howwe recover a type of SecondWelfare Theoremwhenwe introduce transfers to a match-
ing model.

64



Contents

We set up the Lagrangean of (?), and use the minmax theorem. Let ui be the
Lagrangemultiplier associated to the constraint that∑j∈S xij ≤ 1. Let vj be the one
associated to∑i∈B xij ≤ 1. Then, the Lagrangean is given by:

L(x; (u, v)) =
∑

i∈B,j∈S
xijαij +

∑
i∈B

ui

1−
∑
j∈S

xij

+
∑
j∈S

vj

(
1−

∑
i∈B

xij

)
.

By the minmax theorem, we have

max
x

min
u,v
L(x; (u, v)) = min

u,v
max
x
L(x; (u, v)).

Note that

L(x; (u, v)) =
∑
i,j

xijαij +
∑
i

ui

1−
∑
j

xij

+
∑
j

vj

(
1−

∑
i

xij

)

=
∑
i,j

xij (αij − ui − vj) +
∑
i

ui +
∑
j

vj .

Hence,

max
x

min
u,v
L(x; (u, v)) = min

u,v
max
x

∑
i

ui +
∑
j

vj +
∑
i,j

xij(αij − ui − vj).

Then, xij are Lagrange multipliers in the problem of minimizing∑i ui+
∑

j vj sub-
ject to (αij − ui − vj) ≤ 0, which results in the dual problem:

min
(ui),(vj)

∑
i∈B

ui +
∑
j∈S

vj(??)

subject to ui + vj ≥ αij ∀(i, j) ∈ B × S

ui ≥ 0 ∀i ∈ B

vj ≥ 0 ∀j ∈ S.

By duality, the value functions coincide at the solutions of problems (?) and (??):
∑
i∈B

ui +
∑
j∈S

vj =
∑

i∈B,j∈S
xijαij .

Thus, we have shown that for every efficient matching x, there exists a core assign-
ment (u, v) such that ∑i ui +

∑
j vj =

∑
i,j αijxij . Duality between (?) and (??)
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also implies that core assignments can only be supported by efficient matchings. To
see this clearly, let (u, v) be the solution to (??), and x the efficient matching that
supports it. Let (u′, v′) be another core assignment, and, towards a contradiction,
assume it is supported by some matching x′ that is not efficient. Since (u′, v′) is fea-
sible in problem (??), we must have∑i u

′
i +
∑

j v
′
j ≥

∑
i ui +

∑
j vj . However, this

implies∑i,j αijx
′
ij ≥

∑
i,j αijxij , which implies either that x′ is efficient or x is not

efficient, a contradiction. Q.E.D.

Exercise 5.45. Note that the Lagrangean L(x; (u, v)) in the proof of Theorem 5.44
does not include the non-negativity constraints xij ≥ 0 for every (i, j) ∈ B × S.
Show that this omission does not affect the conclusion of the theorem.

In principle, nothing in Theorem 5.44 precludes the solution of (?) to be integer.
The next result shows that this is indeed the case.

Proposition 5.46. There is a solution to the surplus maximization problem in which xij ∈
{0, 1} and where, if xij = 1, then ui + vj = αij .

Proof. The extreme points of the set ofmatchings consist ofmatriceswith 0-1 values.
The primal problem is a linear programming problem, so a solution always exists
that is an extreme point. Furthermore, the complementary slackness conditions of
(??) imply that

0 =
∑
i,j

xij(αij − ui − vj), and αij − ui − vj ≤ 0.

So xij > 0 implies ui + vj = αij . Q.E.D.

Suppose that αij > 0 for all i, j, and that |B| = |S|. Then, the matching con-
straints will holdwith equality at a solution, and all agents will bematched to some-
one.

Notably, the structure of the core in a matching market with transfers is similar
to the one of the set of stablematchings in amodelwithout transfers. The next result
shows that the core also has a lattice structure when we have transfers.

Proposition 5.47. Let (u, v) and (u′, v′) be assignments in the core. Let ūi = max{ui, u′i}
and vj = min{vj , v′j}. Then (ū, v) is an assignment in the core.
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Proof. Note that for any i ∈ B and j ∈ S, ūi + vj ≥ αij (since wlog vj = vj , so
ūi + vj ≥ ui + vj ≥ αij), and ūi, vj ≥ 0.

Choose one optimal matching x that is an extreme point. Then xij = 1 means
that ui + vj = u′i + v′j . Then ūi = u′i if and only if vj = v′j . So ūi + vj = ui + vj . Thus,∑

i∈B
ui+

∑
j∈S

vj =
∑

i∈B,j∈S
xij(ui+vj) =

∑
i∈B,j∈S

xij(ūi+vj) =
∑
i∈B

ūi+
∑
j∈S

vj .

Thus (ū, v) satisfies the constraints of the dual program, and has the same value
for the objective function. Q.E.D.

An analogous result is true if we take the maximum of vj and v′j and the mini-
mum of ui and u′i. It means that buyers share some interests with other buyers, and
sellers with other sellers. There are common interests for agents on the same side
of the market, and opposing interest for agents on opposite side of the market. As
a consequence, we have the following corollary.

Corollary 5.48. There exists core assignments (u∗, v∗) and (u∗, v
∗) such that for any core

assignment (u, v), for every i ∈ B and j ∈ S,

u∗i ≥ui ≥ u∗i

v∗j ≥vj ≥ v∗i

Think of (u∗, v∗) and (u∗, v
∗) as core assignmentswithminimal and, respectively

maximal, prices. That is, these assignments may be thought of as the buyer- and
seller-optimal assignments.

Notes

The seminal contribution is due to Gale and Shapley (1962), who developed the
DA algorithm to prove nonemptiness of the set of stable matchings in a marriage
market. They also established the existence of the M-optimal and W-optimal ex-
tremal stable matchings. Knuth (1976) further analyzed the structure of the set of
stable matchings. They attribute Theorem 5.25 to John Horton Conway. In gen-
eral, the discussion about the structure of the set of stable matchings draws heavily
fromChapters 2 and 3 of Roth and Sotomayor (1990). The characterization of stable
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matchings as fixed points of an increasing function is due to Adachi (2000). For a
thorough treatment of the use of posets and lattices in economics, see the mono-
graph by Topkis (1998) on monotone comparative statics. The brief discussion on
the incentive properties of the DA algorithm is based on Chapter 4 of Roth and So-
tomayor (1990). See that chapter for more results and detailed proofs. The model
of matching with transferable utility is due to Shapley and Shubik (1971), who re-
fer to the problem as The Assignment Game. Standard treatments on optimization
with inequality constraints abound in the literature, e.g., Sundaram (1996) and de
la Fuente (2000). However, linear programming and duality tend not to be included
in the standard “toolkit” for economists. For a detailed treatment on the use of lin-
ear programming methods in economics, see Vohra (2005) (especially Chapter 4)
or the monograph by Galichon (2016) on optimal transport methods (especially
Appendix B).

Additional exercises

Exercise 5.49. A roommate problem is given by (I, (<i)i∈I), where I is a finite set
of agents and <i ∈ P(I) for every i ∈ I . A matching in this setting is a function
µ : I → I such that µ(i) = j if and only if µ(j) = i for every i, j ∈ I . Define what is a
stable matching in this setting. Evaluate: the set of stable matchings in a roommate
problem is non-empty.

Exercise 5.50. A three-sided matching problem is given by (M,W,C,<), where
M , W , and C are finite, nonemtpy and disjoint sets of men, women and children,
respectively. Furthermore, < includes a strict preference relation for every i ∈M ∪
W ∪ C, where <m ∈ P((W × C) ∪ {m}) for everym ∈M , <w ∈ P((M × C) ∪ {w})
for every w ∈ W , and <c ∈ P((M × W ) ∪ {c}) for every c ∈ C. That is, agents
have preferences over pairs of agents from the other sides. Define a matching and
stability in this economy. Showvia a counterexample that the set of stablematchings
may be empty.

Exercise 5.51. A many-to-one matching market is given by (F,W,<), where F
and W are finite, noempty and disjoint sets of firms and workers, and < includes
<f ∈ P(2W ) for every f ∈ F , and <w ∈ P(F ) for every w ∈ W . That is, firms
have preferences over sets of workers, while workers have preferences over individ-
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ual firms.10 Consider a notion of blocking between firms and subsets of workers.
Define stability in this economy, and show via counterexample that the set of stable
matchingsmay be empty. What assumptionwould you add to guarantee that stable
matchings always exist?

10The power set of set X , denoted by 2X , is the set containing all the subsets ofX .
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6 The medical match

In this section, we review one of the first andmostmost famous applications ofmar-
ket designmethods: the assignment of medical interns into residency programs. To
this date, more than 40,000 medical interns are allocated to more than 30,000 resi-
dency programs every year in the U.S. The assignment is done through a central-
ized clearinghouse, known as the National Resident Matching Program (NRMP),
or simply known among doctors as “The Match.” The success of the NRMP in the
U.S. has led to the adoption of similar clearinghouses in other countries, such as
Canada and the U.K.

The history of the NRMP is both an intellectual delight and an example of how
economic theory can guide market design in practice, what Alvin Roth famously
calls “economic engeneering” (2002). First, we will briefly review this history. The
three main lessons to draw are: (i) the importance of stability as a condition for the
survival of an institutional design; (ii) how real-life markets are shaped by a collec-
tion of regulations that are the result of trial-and-error and multiple idiosyncratic
factors, and how all of these can at times result in desirable institutional designs, but
also in market inefficiencies at others; (iii) how economists have a lot to learn from
looking closely at how real-life markets work. Second, we will study closely the al-
gorithm underlying the original design of The Match in the 1950s and its relation
with the Gale-Shapley algorithm.

6.1 A brief history of unraveling

The system through which medical interns are allocated to medical residency pro-
grams in the U.S. underwent multiple changes in the 1940s. In 1951, it reached a
design which persisted for more than four decades, until the end of the 1990s. At
that time, prompted for calls for reform, a group led by economists undertook a
further redesign of the system.

Until 1945, medical interns were assigned to residency programs in a decentral-
ized fashion. As in typical entry-level labor markets, interns were free to apply to
residency programs, which in turn accepted the applications from the interns of
their preference. Medical residency programs (a.k.a. hospitals) would also seek
the interns which they preferred the most and offered them binding agreements to
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enrol in their programs upon graduation. By 1945, it was clear to the administrators
of the Association of American Medical Colleges (AAMC) that the market suffered
from what now economists refer to as unraveling.

Prior to the mid-1940s, hospitals competed in a typical “arms race” for the best
medical interns. The main way in which this competition took place was through
the dates of the binding agreements that hospitals offered students in order to “lock
them” into their residency programs. By offering early binding agreements to stu-
dents, hospitals tried to guarantee high-quality incoming classes. During the first
decades of the twentieth century, hospitals offered binding agreements to students
earlier and earlier in their careers. Initially, these biding agreements were signed
a few months before students in the senior class graduated. However, as hospitals
started undercutting each other’s agreements, the dates at which students had to
decide which residency program they would enrol upon graduation became all but
absurd. By the mid-1940s, agreements were typically signed up to two years before
students graduated from medical school. This was clearly inefficient. On the one
hand, students did not knowwhich program or specialty they would want to study
after graduating. In some cases, they had not even taken the necessary classes to
make up their minds. On the other hand, the earlier the agreements were offered
by hospitals to students, the less hospitals knew about the quality and aptitudes
of the students. Students who appeared to be very promising after two years of
medical school, would turn out to be not so successful by the end of it. Given these
clear inefficiencies, in 1945 the AAMC decided to stop the unraveling by imposing
a minimum date at which medical schools were allowed to disclose student records
to hospitals.

At first, the new minimum date served its purpose in that hospitals were not
able to lock in students early on through binding agreements. However, another
market inefficiency turned up. Given the chaotic application process, which con-
sists of applications and interviews, it was common for hospitals to “jump the gun”
and offer so-called “exploding offers” to students. In order to lock in students, hos-
pitals would make offers to students with very short deadlines right after the date
in which records were released. By forcing a student to decide quickly on whether
or not to enrol in a residency program, a hospital minimised the probability that an-
other hospital, which the student might prefer, would also made them an offer. Stu-
dents faced tough career decisions. They could play it “safe” by accepting an early
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offer, even if it was not from their most preferred hospital. Or they could “risk” it
and decline such offers, in the hope that other hospitals which they preferred more
would make them an offer later. Either way, students were likely to end up in a less
preferred residency programwhile another program they liked better had an open-
ing for them. Therefore, it becamemore andmore common for students to back out
from offers they had previously accepted, which clearly hospitals found annoying.

Between 1945 and 1951, the AAMC implemented a series of regulations which
aimed to solve this problem. They largely consisted on regulating the time at which
offers could be made, and the time which they should give interns to make up their
minds. After some (unsuccessful) experimentation with different sorts of rules, in
1951, the AAMC resolved to fully centralize the process into a matching clearing-
house. Under the new procedure, students and hospitals would communicate and
exchange information as before via interviews, but then both would submit rank-
ordered lists of their preferences over the hospitals and applicants they were con-
sidering. The final allocation of interns to residency programs would be decided
through a matching algorithm.

In 1951, the AAMC performed a trial-run of the new procedure. It was not used
to actuallymatch students and hospitals on that year, but as a basis for the next year.
Despite some caveats, the trial-runwas deemed to be successful, and the AAMCde-
cided to fully implement the matching mechanism with a few tweaks the following
year. A key aspect of the market that allowed for this type of organization was that
the salaries and responsibilities for medical interns were mostly standard across
all programs and not an important part of contract negotiations. Importantly, the
matching procedure was to be voluntary. Students were free to opt out and con-
tract directly with hospitals. The matching algorithm, which was used until the
end of the 1990s, is known as the NIMP algorithm (for National Intern Matching
Program), which used to be the name of the program at the time.

In a remarkable “discovery” of the economics discipline, some decades later it
was noted that the NIMP and the Gale-Shapley algorithms (1962), though written
distinctly, are actually equivalent. Notably, this was unknown to both the admin-
istrators of the NIMP, and to David Gale and Lloyd Shapley until the 1970s.11 The

11According to anecdotal evidence reported by Roth (1984), it was until 1976 when David Gale
first heard of the labor market for medical interns and sent a copy of Gale and Shapley (1962) to an
administrator of the NIMP.
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NIMP algorithm was used until the late 1990s. At the time, the mechanism faced
strong opposition from students, who claimed, amongst other things, that themech-
anism was open to “gaming.” Furthermore, as years went by, it became more com-
mon for couples ofmedical interns to look formedical residency programs thatwere
geographically close to one another. For this reason, a group of economists led by
AlvinRoth undertook a partial redesign of thematching algorithm in themid-1990s.
Though the main aspects of the Gale-Shapley algorithm remain in place to date,
the redesign focused on (i) changing the algorithm from the program-proposing to
the applicant-proposing version of the Gale-Shapley algorithm, and (ii) the way in
which the algorithm deals with couples who have interdependent preferences.

6.2 NIMP algorithm

In this subsection, we study formally the NIMP algorithm, as well as the algorithm
used in the trial run of 1951. For simplicity, we restrict attention to the case in
which every hospital has exactly one position. As discussed above, the algorithm
was modified to incorporate several complaints brought up by students after the
trial run. As we shall see below, the main concern was that the algorithm was not
strategy-proof for students. But not only this, it was also not a stable mechanism.
After adjusting the algorithm, AAMC administrators came up with the NIMP al-
gorithm, which always generates a stable matching. At the time, it was mistakenly
claimed that it also was strategy-proof for students. Remarkably, this appears to
have remained unknown for several decades until economists studied the algorithm
formally.

Definition 6.1. A one-to-one medical match consists on a tuple (S,H,<), where S
and H are finite, nonempty, and disjoint sets of students and hospitals, respectively. The
preference profile < contains a linear order for each agent in the market over the agents on
the other side (including the possibility of remaining single).

Note that every one-to-one medical match is a marriage market, and vice versa.
We denote a generic student by sj ∈ S, and a generic hospital by hi ∈ H . Also, for
convenience, and according to the nature of the NRMP, we express linear orders as
rank order lists (instead of preference relations).

Algorithm 6.2 (NIMP trial-run). Students submit a rank ordering of hospitals. Hospi-
tals submit a ranking dividing student into five groups: rank 1, rank 2, . . . , rank 5; each
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group containing as many students as the number of positions the hospital is offering. The
algorithm proceeds in consecutive stages as follows.

• 1:1 stage. Students and hospitals are matched if they give each other a rank of 1.

• 1:2 stage. The remaining students and hospitals are matched if the student has ranked
the hospital 1 and the hospital has ranked the student 2.

• 2:1 stage. Among the remaining students and hospitals, match students who ranked
hospitals 2, and hospitals who ranked students 1.

• 2:2 stage. . . . , followed by 1:3 stage, and so on.

Proposition 6.3. The NIMP trial-run algorithm is not stable, nor strategy-proof for stu-
dents.

Proof. Consider the following example with three students and three hospitals. The
preferences are given as follows:

s1 : h1, h2, h3; h1 : s2, s3, s1;

s2 : h2, h3, h1; h2 : s1, s2, s3;

s3 : h1, h3, h2; h3 : s3, s2, s1.

Suppose that everyone submits their true preferences to the NIMP trial-run algo-
rithm. In the 1:1 stage, there are no matches. No one is ranked 1 by whom they
rank first. At the 1:2 stage, it matches (s2, h2) and (s3, h1). And, eventually, it also
matches (s1, h3). First, note that this matching is not stable since s1 and h2 form a
blocking pair. Second, note that, if s1 ranked h2 as their top choice, above h1, then
(s1, h2) would be matched in the 1:1 stage. Therefore, s1 has incentives to misreport
their preferences. This shows that the NIMP trial-run algorithm is neither stable
nor strategy-proof for students. Q.E.D.

Exercise 6.4. Evaluate: the NIMP trial-run algorithm is (i) Pareto efficient, and (ii)
strategy-proof for hospitals.

Now, we turn to the NIMP algorithm, which was first used in 1952, and re-
mained without any change until the redesign of the NRMP in the mid-1990s.
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Algorithm 6.5 (NIMP). Students submit a rank ordering of hospitals, and indicate which
of them are unacceptable. Likewise, hospitals submit a rank ordering of students and indicate
which of them are unacceptable. First, from the ranking list of each hospital, remove every
student who marked the hospital as unacceptable. Likewise, from the ranking list of each
student, remove every hospital that marked the student as unacceptable. The edited lists are
rank orderings of mutually acceptable parties. Initially, no one is tentatively matched. The
algorithm proceeds in consecutive stages as follows.

• 1:1 step. Check whether there are students and hospitals who rank each other as their
top choice and are not tentatively matched. If no such matches are found, proceed to
the 2:1 step. If any such matches are found, proceed to the tentative-assignment-and-
update phase.

. . .

• k:1 step. Check whether there are students and hospitals such that the student ranks
the hospital as their k-th choice, the hospital ranks the student as their top choice, and
they are not tentatively matched. If no such matches are found, proceed to the k+1:1
step. If any such matches are found, proceed to the tentative-assignment-and-update
phase.

• Tentative-assignment-and-update phase. Assume the algorithm entered this phase
from the k:1 step. Assign tentatively the k:1 matches, i.e., tentatively match every
student and hospital such that the hospital is k-th in the student’s list and the stu-
dent is the hospital’s top choice. Any new tentative matches replace previous tentative
matches. Then, update the rankings of the students and hospitals as follows.

– Consider the ranking of student sj . From this ranking, delete every hospital
that student sj ranks lower than their current tentative match. That is, if sj is
tentatively matched to their k-th choice, their ranking now only includes their
first k choices.

– Consider the ranking of hospital hi. Delete student sj from this ranking if hos-
pital hi was just deleted from the ranking of student sj . That is, the updated
ranking list of hi only includes students who have not been tentatively assigned
to a hospital they prefer over hi. Note that if a top-ranked choice is deleted in a
hospital’s ranking list, students are moved up the ranking.

– After updating the ranking lists, return to the 1:1 step.
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• Terminate the algorithm when no new tentative matches can be found, at which point
the current tentative matches become final.

Example 6.6. Consider the following example with four students and four hospitals. The
preferences are given as follows (where we omit unacceptable parties from rank ordered lists).

s1 : h1, h2, h3, h4 h1 : s3, s2, s1

s2 : h2, h3 h2 : s1, s2, s3, s4

s3 : h4, h3 h3 : s4, s3, s2

s4 : h2, h1, h4, h3 h4 : s2, s1, s4, s3.

We run the NIMP algorithm. In the first step, from each agent’s ranking list delete every
party who does not find them acceptable. This yields the following updated ranking lists:

s1 : h1, h2, h4 h1 : s1

s2 : h2, h3 h2 : s1, s2, s4

s3 : h4, h3 h3 : s4, s3, s2

s4 : h2, h4, h3 h4 : s1, s4, s3.

In the 1:1 step, match (s1, h1). Update the ranking lists as follows:

s1 : h1 h1 : s1

s2 : h2, h3 h2 : s2, s4

s3 : h4, h3 h3 : s4, s3, s2

s4 : h2, h4, h3 h4 : s4, s3.

In the 1:1 step, match (s2, h2). Update the ranking lists as follows:

s1 : h1 h1 : s1

s2 : h2 h2 : s2, s4

s3 : h4, h3 h3 : s4, s3

s4 : h2, h4, h3 h4 : s4, s3.
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In the 1:1 step, we find no (new) matches. In the 2:1 step, match (s4, h4). Update the
ranking lists as follows:

s1 : h1 h1 : s1

s2 : h2 h2 : s2

s3 : h4, h3 h3 : s3

s4 : h2, h4 h4 : s4, s3.

In the 1:1 step, we find no (new) matches. In the 2:1 step, match (s3, h3). Then, we find no
new tentative matches, at which point the algorithm terminates. The resulting matching is
given by: (s1, h1), (s2, h2), (s3, h3), and (s4, h4).

Now, run the hospital-proposing Gale-Shapley algorithm. Recall the original preference
profile:

s1 : h1, h2, h3, h4 h1 : s3, s2, s1

s2 : h2, h3 h2 : s1, s2, s3, s4

s3 : h4, h3 h3 : s4, s3, s2

s4 : h2, h1, h4, h3 h3 : s2, s1, s4, s3.

Round 1: Proposals: h1 → s3, h2 → s1, h3 → s4, h4 → s2

Accepted: h2 → s1, h3 → s4

Round 2: Proposals: h1 → s2, h4 → s1

Accepted: h2 → s1, h3 → s4

Round 3: Proposals: h1 → s1, h4 → s4

Accepted: h1 → s1, h4 → s4

Round 4: Proposals: h2 → s2, h3 → s3

Accepted: h1 → s1, h2 → s2, h3 → s3, h4 → s4

Both the NIMP algorithm and the hospital-proposing Gale-Shapley algorithm reach the same
matching. As we know from the previous section, this matching is the hospital-optimal stable
matching. As the next theorem shows, the NIMP algorithm and the hospital-proposing Gale-
Shapley algorithm do not coincide by chance. They are, indeed, equivalent algorithms.
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Theorem 6.7. The NIMP algorithm and the hospital-proposing Gale-Shapley algorithm
are equivalent (they always generate the same matching).

Exercise 6.8. Prove Theorem 6.7.

Exercise 6.9. The first step of the NIMP algorithm consists in deleting from each
agent’s rank order list the parties on the other side who find such agent unaccept-
able. Show with an example that we may obtain a matching that is not stable if we
skip the first step in the NIMP algorithm.

Notes

The history of the NRMP, including the NIMP algorithm and its 1951 trial-run, is
surveyed in Roth (1984) and Chapter 1 of Roth and Sotomayor (1990). Roth and
Xing (1994) provide a comprehensive treatment of unraveling in several real-life
markets. For a full account of the redesign of the NRMP in the 1990s, see Roth and
Peranson (1997; 1999).
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7 School choice

In this section we study the problem of assigning public school seats to K-12 stu-
dents. Traditionally, children are assigned to schools according to where they live.
However, in several parts of the world this has been deemed unfair in recent years.
While wealthier parents can decide to move to a city or neighborhood with good
schools, parents without such means had no choice of school, and had to send their
children to schools assigned to them by the district. Today, several states in the
U.S. offer inter-district and intra-district school choice programs. We now study the
problem of assigning students to schools as a formal two-sided matching problem.

Definition 7.1. A school choice problem is a tuple (I, S,Q,�I ,�S), where I and S are
nonempty, finite, and disjoint sets of students and schools, respectively; Q = (qs)s∈S is
a vector of capacities, one for each school, with qs ∈ N for each s ∈ S; �I = (�i)i∈I is a
preference profile for students, where �i ∈ P(S ∪ ∅) for each i ∈ I , and �S = (�s)s∈S is
a priority profile for schools, where �s ∈ P(I) for each s ∈ S.

The capacity qs indicates the number of available seats at school s. Priorities have
the following interpretation: the ranking i �s j means that student i has higher
priority than student j in school s. In practice, priorities are determined by com-
bining test scores, home address, whether there are siblings already enrolled in the
school, etc. In some cases they might even have a random component. You should
think about priorities as part of a school’s admission procedure. In principle, �s
only incorporates information that is publicly available. Students’ preferences de-
scribe their ranking over schools. The option ∅ corresponds to being unmatched.
For example, the ranking s �i ∅ �i s′ means that student i prefers school s to being
unmatched, but prefers being unmatched than being assigned to school s′.

Definition 7.2. Let (I, S,Q,�I ,�S) be a school choice problem. Amatching is a function
µ : I → S ∪ {∅} such that |µ−1(s)| ≤ qs for every s ∈ S. Denote the set of all matchings
byM(I, S,Q).

In this context, amatching indicates the school towhich each student is assigned.
The inverse mapping µ−1 indicates the set of students that are assigned to each
school. The requirement |µ−1(s)| ≤ qs means that the number of students matched
to a school under µmust be less than or equal to its capacity.

We consider two key properties of matchings in school choice problems.
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Definition 7.3. Amatching µ ∈M(I, S,Q) eliminates justified envy if there is no pair
(i, s) ∈ I × S such that i �s j and s �i µ(i) for some student j with µ(j) = s.

Notice the resemblance of justified envy with stability. In this context, justified
envy refers to envy between students. Student i has justified envy for j if i has a
higher priority over j in the school to which j is matched to, while i is matched to
a school they prefer less. Underlying this notion is the idea that if the priority of
student i for school s is violated in favor of a different student j, then student i has
incentives to seek legal action against the school. In the context of school choice,
legal and political concerns appear to strongly favor mechanisms that avoid such
situations.

Definition 7.4. A matching µ ∈M(I, S,Q) is non-wasteful if, for every (i, s) ∈ I ×S,
s �i µ(i) implies |µ−1(s)| = qs.

Non-wastefulness simply means that there are no seats vacant while there are
students who prefer those seats to their current assignments.

Exercise 7.5. How are students assigned to high schools in the place where you
went to high school? Does the mechanism create matchings that eliminate justified
envy and are non-wasteful?

7.1 The Boston mechanism

Until recently, one of the most commonly used school choice mechanisms was the
one used by the Boston Public Schools (BPS) in Massachusetts. The Boston school
choice mechanism is defined as follows.

Algorithm 7.6 (Boston). Each school determines a priority ordering over students. (In the
case of Boston, priorities depend on home address, whether the student has a sibling already
attending a school, and a lottery number to break ties.) Each student submits a preference
ranking of the schools. The algorithm proceeds in steps as follows.

• Step 1: For each school, consider the students who have listed it as their top choice.
Assign the seats of each school to these students one at a time following its priority
order. Proceed until either there are no seats left or until there is no student left who
has listed it as their top choice.
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• Step k: For each school that still has available seats, consider the students who have
listed it as their k-th choice. Assign the remaining seats of each school to these students
one at a time following its priority order. Proceed until either there are no seats left or
until there is no student left who has listed it as their top choice.

• Stop if all students have been assigned or there are no seats left.

One major problem with the mechanism is that is not strategy-proof. Even if a
student has a very high priority at school s, unless they list it as their top choice, they
will lose their priority to students who ranked school s at the top of their list. For
this reason, the Boston mechanism gives parents strong incentives to inflate their
ranking of schools where they have high priority. As observed by Glazerman and
Meyer (1994),

It may be optimal for some families to be strategic in listing their school choices.
For example, if a parent thinks that their favorite school is oversubscribed and
they have a close second favorite, they may try to avoid "wasting" their first
choice on a very popular school and instead list their number two school first.

This incentive for families to strategize their applications makes the mechanism
difficult to predict. It also favors families who are more experienced with the mech-
anism.

Exercise 7.7. Give an example in which at least one student has incentives to mis-
report their true preferences to the Boston mechanism.

The Boston algorithm is also known as the Immediate Acceptance (IA) algo-
rithm. This is to contrast it with the Deferred Acceptance (DA) algorithm by Gale
and Shapley. Note that the Boston algorithm works as a student-proposing Gale-
Shapley algorithm in which acceptances are final instead of tentative.

Exercise 7.8. Evaluate: the Boston mechanism (i) eliminates justified envy, and (ii)
is non-wasteful.

Exercise 7.9. Show that in the Bostonmechanism, if student i is matched to a school
they rank worse than school s, then all the seats of school s are taken by students
who rank s at least as high as i.
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7.2 Deferred acceptance and Pareto efficiency

A first alternative to the Boston mechanism is the students-proposing deferred ac-
ceptance algorithm. This mechanism works almost verbatim as described for the
marriagemarket, butwith one change: at every step, a school s is tentativelymatched
to the best qs students who have proposed or who were tentatively matched to it in
the previous round, and rejects the rest.

The deferred acceptancemechanism eliminates justified envy. This follows from
the same argument we used to show that it always produces a stable matching in
marriage markets. And, it is also strategy-proof for the students. No student can
gain by misreporting their preferences. Due to these desirable features, DA was
adopted by the school choice programs of New York City (in 2003) and Boston (in
2005). However, a disadvantage ofDA is that it does not guarantee that the resulting
allocation is Pareto efficient for the students. Consider the following example.

Example 7.10. There are 3 students {1, 2, 3} and 3 schools {A,B,C}, each of which has
only one seat. Priorities and preferences are as follows:

�1: B,A,C �2: A,B,C �3: A,B,C

�A: 1, 3, 2 �B: 2, 1, 3 �C : 2, 1, 3

Verify that the student-proposing DA matches 1 to A, 2 to B, and 3 to C. Since students 1
and 2 prefer schools A and B more than C, and schools A and B prefer student 1 or 2 over
3, student 3 is matched to school C in every stable matching.12 However, stability forces
students 1 and 2 to “share” schools A and B in an inefficient way. It forces 1 to be matched
to A rather than to B. The allocation is Pareto dominated by the matching where we switch
the assignments of 1 and 2, which makes all students better off.

Allocations that are not Pareto efficient for students are hard to justify in practice.
In this context, the public or the designer might wish to prioritize efficiency for one
side of the market over the other.

Exercise 7.11. Evaluate: the Boston mechanism is Pareto efficient for students.

12An alternative way of observing this is by noting that C is the most preferred stable partner of 3.
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7.3 Two notions of Pareto efficiency

The example above shows that DA can result in allocations that are not Pareto effi-
cient for the students. Now we investigate whether there is a mechanism that does
better than DA in this sense.

Definition 7.12. Amechanism φ Pareto dominates a mechanism ψ if (i) for all profile of
preferences, φ results in a matching that all students prefer at least as much as the matching
obtained by ψ, and (ii) for some profile of students’ preferences, some of the students are
strictly better off under φ than ψ.

Even if amechanism can result in allocations that are not Pareto-efficient, it is not
clear that we can find another mechanism that Pareto dominates it and has desirable
properties. Indeed, the next result shows that for any mechanism φ that is strategy-
proof for students and non-wasteful, there is no other strategy-proof mechanism
that Pareto dominates it. In particular, the result applies to the student-proposing
DA algorithm, being both strategy-proof and non-wasteful.

Proposition 7.13. If φ is a strategy-proof (for students) and non-wasteful mechanism, then
there is no strategy-proof mechanism that Pareto dominates φ.

Proof. Let φ be a strategy-proof (for students) and non-wasteful mechanism. The
proof is divided into two parts. Fix a preference profile �I ∈ P(S ∪ {∅})|I|. Let
µ = φ(�I) be the matching produced by the mechanism φ given preferences �I ,
and suppose ν is matching that satisfies ν(i) <i µ(i) for all i.

First, we will show that the same set of agents is matched under the two match-
ings. Clearly, if i is matched under µ then i must also be matched under ν (other-
wise, iwould find it profitable to report s = µ(i) as unacceptable in φ). Conversely,
suppose i is matched under ν but not under µ. Because φ is non-wasteful, it must
be that under ν, i is matched to some school s that was fully assigned under µ. So,
it must be that under ν some other student i1 is now matched to some other school
s1. Since preferences are strict, i1 is made strictly better off. This implies that s1 was
full under µ. Hence some other student i2 is no longer matched to i1 but to another
school that was full under µ. Proceeding this way we obtain a sequence of students
who are made strictly better off. Since this sequence must stop, we must find at
least one student j who is matched to a school that under µwas not at full capacity.
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Because φ is non-wasteful and preferences are strict then j is made strictly worse
off. A contradiction.

Now suppose there exists a mechanism ψ that Pareto dominates φ. We prove
that ψ is not strategy-proof for students. There exists a profile �I of students’ pref-
erences such that ψ[�I ](i) <i φ[�I ](i) for all i and the preference is strict for some
j. Let s = ψ[�I ](j). Consider that j reports�′j , the preference ranking in which s is
the only acceptable school. Then, strategy-proofness of φ implies φ(�′j ,�−j)(j) = ∅
(otherwise, j would have incentives to misreport in φ). Since φ is dominated by ψ,
by what we showed above, the same students must be matched under both φ(�′j
,�−j) and ψ(�′j ,�−j). Then, ψ(�′j ,�−j)(j) = ∅. However, this implies that ψ is
not strategy-proof since, when j’s true preference is �′j , they would rather lie and
report �j . Q.E.D.

7.4 The school choice TTC

An alternative to obtain matchings that are Pareto efficient for students is to use a
modified version off the Top-trading Cycle (TTC).

Algorithm 7.14 (School choice TTC). Assign a counter for each school which keeps track
of how many seats are still available at the school. Initially, set the counter of each school to
be equal to its capacity. Proceed in steps as follows.

• Each student points to their favorite school. Each school that has not run out of coun-
ters points to the student who has the highest priority for the school.

Since the number of students and schools are finite, there is at least one cycle. More-
over, every school and every student can be part of at most one cycle.

Every student in a cycle is assigned a seat at the school they point to and is removed.
The counter of each school in a cycle is reduced by one. Remove schools whose counter
reaches zero.

• Repeat until no more students are assigned.

Themechanism favors students with high priority, but in a novel way. A student
is allowed to use their high priority in one school to get into another school, as long
as this leads to a Pareto improvement.
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Proposition 7.15. The school choice TTC mechanism is strategy-proof for students and
Pareto efficient.

Exercise 7.16. Prove Proposition 7.15

Exercise 7.17. Prove that the school choice TTC is non-wasteful.

A drawback from TTC is that it does not eliminate justified envy. Consider the
following example.

Example 7.18. Consider the same school choice problem as in Example 7.10, which we
reproduce below for convenience:

�1: B,A,C �2: A,B,C �3: A,B,C

�A: 1, 3, 2 �B: 2, 1, 3 �C : 2, 1, 3

As we argued, the student-proposing DA matches 1 to A, 2 to B, and 3 to C. Note that
the TTC, in turn, assigns 1 to B, 2 to A, and 3 to C. As we noted, this matching does
not eliminate justified envy since 3 envies 2. Even though the outcome of the TTC Pareto
dominates the one of the student-proposing DA, according to Proposition 7.13, this cannot
always be the case (since TTC is strategy-proof and non-wasteful). Indeed, consider the
following preference profile:

�1: B,C,A �2: A,B,C �3: A,B,C

�A: 1, 3, 2 �B: 2, 3, 1 �C : 2, 1, 3

Even though agent 1 ranks A as the worst choice now, they still have the highest priority
in A (which matters for TTC). Verify that the student-proposing DA matches 1 to C, 2 to
B, and 3 to A. By contrast, TTC matches 1 to B, 2 to A, and 3 to C. Therefore, agents 1
and 2 would rather use the TTC to assign school seats, while student 3 would rather use the
student-proposing DA. In this case, no matching Pareto dominates the other.

The example above shows how there is a trade-off between eliminating justified
envy and Pareto efficiency for students. The student-proposing DA eliminates justi-
fied envy butmay generatematchings that are not Pareto efficient amongst students.
Conversely, the school choice TTC always generates matchings that are Pareto effi-
cient amongst students, but may fail to eliminate justified envy.
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As argued in Kesten (2010), the idea of trading priorities is not without prob-
lems from a practical perspective. In his May 25, 2005, memorandum to the School
Committee, regarding his take on a trading-based mechanism, the (then) Superin-
tendent of Boston, Thomas Payzant, writes (p. 3):

There may be advantages to this approach... It may be argued, however, that
certain priorities, e.g., sibling priority, apply only to students for particular
schools and should not be traded away.

The Boston Public Schools (BPS) Strategic Planning Team’s May 11, 2005, Rec-
ommendation Report further states (pp. 23, 38):

The trading mechanism can have the effect of "diluting" priorities’ impacts, if
priorities are to be "owned" by the district as opposed to being "owned" by
parents; it shifts the emphasis onto the priorities and away from the goals the
BPS is trying to achieve by granting these priorities in the first place; and could
lead to families believing they can strategize by listing a school they don’t want
in hopes of a trade.

Therefore, whendesigning school choice systems, administrators have been forced
to take a stance and decidewhether they favor amechanism that eliminates justified
envy, such as DA, or that is Pareto efficient for students, such as TTC.

Additional exercises

Exercise 7.19. Consider a school choice problem inwhich all students have the same
ranking �i = �∗ over schools, and that this ranking is known. In this case, what
mechanism would you suggest for assigning students to schools? Why?

Exercise 7.20. In some countries, such as India, China, andTurkey, and some schools
in the United States, students take a centralized exam that determines common
school priorities over students. Consider the school choice problem again, but as-
sume that all schools have the same priority �s = �∗ over students, and that this
ranking is known. In this case, what mechanism would you suggest? Why?
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Notes

The seminal contribution in the school choice literature is Abdulkadiroğlu and Sön-
mez (2003). For a discussion of the tension between stability and efficiency, includ-
ing the shortcomings of using TTC in practice, see Kesten (2010). The literature on
school choice has exploded since the original paper by Abdulkadiroğlu and Sön-
mez. It includes theoretical and applied papers using a wide range of methods: ex-
periments, observational studies, structural estimation, etc. For an overview of the
literature, see Pathak (2011). For a discussion on the practical aspects of designing
school choice mechanisms, see Pathak (2017).
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